Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Severinghaus, JP, Albert MR, Courville ZR, Fahnestock MA, Kawamura K, Montzka SA, Muhle J, Scambos TA, Shields E, Shuman CA, Suwa M, Tans P, Weiss RF.  2010.  Deep air convection in the firn at a zero-accumulation site, central Antarctica. Earth and Planetary Science Letters. 293:359-367.   10.1016/j.epsl.2010.03.003   AbstractWebsite

Ice cores provide unique archives of past atmospheres and climate, but interpretation of trapped-gas records and their climatic significance has been hampered by a poor knowledge of the prevalence of air convection in the firn layer on top of polar ice sheets. In particular, the phasing of greenhouse gases and climate from ice cores has been obscured by a discrepancy between empirical and model-based estimates of the age difference between trapped gases and enclosing ice, which may be due to air convection. Here we show that deep air convection (>23 m) occurs at a windy, near-zero-accumulation rate site in central Antarctica known informally as the Megadunes site (80.77914 degrees S, 124.48796 degrees E). Deep convection is evident in depth profiles of air withdrawn from the firn layer, in the observed pattern of the nitrogen isotope ratio (15)N/(14)N, the argon isotope ratio (40)Ar/(36)Ar, and in the mixing ratios of the anthropogenic halocarbons methyl chloroform (CH(3)CCl(3)) and HFC-134a (CH(2)FCF(3)). Transport parameters (diffusivities) were inferred and air was dated using measured carbon dioxide (CO(2)) and methane (CH(4)) mixing ratios, by comparing with the Law Dome atmospheric record, which shows that these are the oldest firn air samples ever recovered (CO(2) mean age = 1863 AD). The low accumulation rate and the consequent intense metamorphism of the firn (due to prolonged exposure to seasonal temperature cycling) likely contribute to deep air convection via large grain size and vertical cracks that act as conduits for vigorous air motion. The Megadunes site provides a possible modern analog for the glacial conditions in the Vostok, Dome Fuji, and Dome C ice core records and a possible explanation for lower-than-expected (15)N/(14)N ratios in trapped air bubbles at these times. A general conclusion is that very low accumulation rate causes deep air convection via its effect on firn structural characteristics. (C) 2010 Elsevier B.V. All rights reserved.

Petrenko, VV, Smith AM, Brook EJ, Lowe D, Riedel K, Brailsford G, Hua Q, Schaefer H, Reeh N, Weiss RF, Etheridge D, Severinghaus JP.  2009.  14CH4 measurements in Greenland ice: investigating last glacial termination CH4 sources. Science. 324:506-508.   10.1126/science.1168909   AbstractWebsite

The cause of a large increase of atmospheric methane concentration during the Younger Dryas-Preboreal abrupt climatic transition (similar to 11,600 years ago) has been the subject of much debate. The carbon-14 (C-14) content of methane ((CH4)-C-14) should distinguish between wetland and clathrate contributions to this increase. We present measurements of (CH4)-C-14 in glacial ice, targeting this transition, performed by using ice samples obtained from an ablation site in west Greenland. Measured (CH4)-C-14 values were higher than predicted under any scenario. Sample (CH4)-C-14 appears to be elevated by direct cosmogenic C-14 production in ice. C-14 of CO was measured to better understand this process and correct the sample (CH4)-C-14. Corrected results suggest that wetland sources were likely responsible for the majority of the Younger Dryas-Preboreal CH4 rise.

Waugh, DW, Vollmer MK, Weiss RF, Haine TWN, Hall TM.  2002.  Transit time distributions in Lake Issyk-Kul. Geophysical Research Letters. 29   10.1029/2002gl016201   AbstractWebsite

[1] Measurements of sulfur hexafluoride (SF6)and chlorofluorocarbons (CFCs) are used to constrain the timescales for deep-water renewal in Lake Issyk-Kul. As these tracers have different tropospheric histories their combination provides more transport information than one tracer alone. In particular, from these measurements the mean, Gamma, and standard deviation, sigma, of the distributions of transit times since water made last contact with the surface can be tightly constrained. Gamma is older than the age determined from SF6 and younger than the ages from the CFCs, and increases from around 4 yrs at 200 m to around 10.5 yrs at the deepest location (655 m). sigma also increases with depth and equals around 0.7 to 0.8 Gamma, which corresponds to large ranges of transit times, and implies mixing processes play a major role in the transport. The approach used can also be applied to similar tracer measurements in the oceans and groundwaters to constrain transport in these geophysical systems.

Alexander, B, Vollmer MK, Jackson T, Weiss RF, Thiemens MH.  2001.  Stratospheric CO2 isotopic anomalies and SF6 and CFC tracer concentrations in the Arctic polar vortex. Geophysical Research Letters. 28:4103-4106.   10.1029/2001gl013692   AbstractWebsite

Isotopic measurements (delta O-17 and delta O-18) Of CO2 along with concentration measurements of SF6, CC1(3)F (CFC-11), CC1(2)F(2) (CFC-12) and CC1(2)FCC1F(2) (CFC-113) in stratospheric samples collected within the Arctic polar vortex are reported. These are the first simultaneous measurements of the concentration of fluorinated compounds and the complete oxygen isotopic composition Of CO2 in the middle atmosphere. A mass-independent anomaly in the oxygen isotopic composition Of CO2 is observed that arises from isotopic exchange with stratospheric O(D-1) derived from O-3 photolysis. The data exhibit a strong anti-correlation between the Delta O-17 (the degree of the mass-independent anomaly) and molecular tracer concentrations. The potential ability of tl-ris isotopic proxy to trace mesospheric and stratospheric transport is discussed.