Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Reimann, S, Elkins JW, Fraser PJ, Hall BD, Kurylo MJ, Mahieu E, Montzka SA, Prinn RG, Rigby M, Simmonds PG, Weiss RF.  2018.  Observing the atmospheric evolution of ozone-depleting substances. Comptes Rendus Geoscience. 350:384-392.   10.1016/j.crte.2018.08.008   AbstractWebsite

The atmospheric observations of ozone-depleting substances (ODSs) have been essential for following their atmospheric response to the production and use restrictions imposed by the Montreal Protocol and its Amendments and Adjustments. ODSs have been used since the first half of the 20th century in industrial and domestic applications. However, their atmospheric growth went unnoticed until the early 1970s, when they were discovered using gas chromatograph-electron capture detection (GC-ECD) instruments. Similar instrumentation formed the basis of global flask and in situ measurements commenced by NOAA and ALE/GAGE/AGAGE in the late 1970s. The combination of these networks, supported by a number of other laboratories, has been essential for following the tropospheric trends of ODSs. Additionally, ground-based remote sensing measurements within NDACC and aircraft-based observation programs have been crucial for measuring the evolution of the ODS abundances over the entire atmosphere. Maintaining these networks at least at their current state is vital for ensuring the on-going verification of the success of the Montreal Protocol. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

2002
Vollmer, MK, Weiss RF, Schlosser P, Williams RT.  2002.  Deep-water renewal in Lake Issyk-Kul. Geophysical Research Letters. 29   10.1029/2002gl014763   AbstractWebsite

[1] The deep-water renewal rates of Lake Issyk-Kul are studied using the time-dependent anthropogenically produced tracers sulfur hexafluoride (SF6), chlorofluorocarbons (CFCs) and tritium-helium-3. SF6 and the CFCs are used to calibrate a mixing model from which the vertical age distribution is calculated and found to be comparable to the SF6 apparent ages. Based on this model, the mean age of the water below 100 m depth is 6.1 yrs. The mean oxygen consumption rate for the same depth range is 6.4 m mol kg(-1) yr(-1) and the mean remineralization rates for nitrate, phosphate and silicate are 0.53, 0.003 and 0.67 m mol kg(-1) yr(-1), respectively.

2000
Min, DH, Bullister JL, Weiss RF.  2000.  Constant ventilation age of thermocline water in the eastern subtropical North Pacific Ocean from chlorofluorocarbon measurements over a 12-year period. Geophysical Research Letters. 27:3909-3912.   10.1029/1999gl011318   AbstractWebsite

Northeastern Pacific chlorofluorocarbon (CFC) data collected between 1982 and 1994 near Geochemical Ocean Sections Study (GEOSECS) station 1 (28.5 degreesN, 122.5 degreesW) record decadal timescale ventilation processes of the subtropical thermocline in this region. The CFC-12 concentration age field versus potential density has been remarkably constant over the 12-year period, although CFC concentrations in the upper kilometer of the water column have increased with time. Results from a simple one-dimensional advection-diffusion model are consistent with an advection velocity of ca. 0.8-0.9 cm s(-1) from the source area. The influence of the 1982-83 El Nino is noticeable in the 1983 observations. While the main stream of subarctic source water al,pears to spread southward at a constant rate, during El Nino years the influence of comparatively CFC-free tropical thermocline waters is enhanced in this region, leading to reduced vertical inventories of CFCs, but without changing the apparent CFC ages as functions of potential density. Apparent oxygen utilization rates decrease with increasing CFC age, and also appear not to have changed significantly ol er the 12-year measurement period.

1998
Miller, BR, Huang J, Weiss RF, Prinn RG, Fraser PJ.  1998.  Atmospheric trend and lifetime of chlorodifluoromethane (HCFC-22) and the global tropospheric OH concentration. Journal of Geophysical Research-Atmospheres. 103:13237-13248.   10.1029/98jd00771   AbstractWebsite

Concentrations of CHClF2 (HCFC-22) in clean background air collected at Cape Grim, Tasmania, over the period 1978-1996, and at La Jolla, California, over the period 1992-1997, have been measured by oxygen-doped electron capture detection gas chromatography. The mid-1996 dry-air mole fractions and trends were 116.7 parts per trillion (ppt) and 6.0 ppt yr(-1) in Cape Grim and 132.4 ppt and 5.5 ppt yr(-1) in California: respectively. These observations, together with estimates of industrial emissions, have been fitted to a two-dimensional global atmospheric model by an optimal estimation inversion technique to yield estimated tropospheric and total atmospheric Lifetimes for chemical destruction of CHClF2 of 9.1(-2.8)(+4.4) years and 10.0(-3.0)(+4.4) years, respectively. These lifetimes Correspond to a temperature- and density-weighed global tropospheric OH abundance of 11.0(-3.6)(+5.0) x 10(5) radical cm(-3), which is in statistical agreement with our recent more accurate estimate of OH abundance based on measurements of CH3CCl3. Our analysis suggests that, compared to current industrial estimates, southern hemisphere emissions are higher, global emissions are larger in earlier years and smaller in later years, and, finally, production by nonreporting companies is less.