Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2007
Xiao, X, Prinn RG, Simmonds PG, Steele LP, Novelli PC, Huang J, Langenfelds RL, O'Doherty S, Krummel PB, Fraser PJ, Porter LW, Weiss RF, Salameh P, Wang RHJ.  2007.  Optimal estimation of the soil uptake rate of molecular hydrogen from the Advanced Global Atmospheric Gases Experiment and other measurements. Journal of Geophysical Research-Atmospheres. 112   10.1029/2006jd007241   AbstractWebsite

[1] Hydrogen (H(2)), a proposed clean energy alternative, warrants detailed investigation of its global budget and future environmental impacts. The magnitudes and seasonal cycles of the major ( presumably microbial) soil sink of hydrogen have been estimated from high-frequency in situ AGAGE H(2) observations and also from more geographically extensive but low-frequency flask measurements from CSIRO and NOAA-GMD using the Kalman filter in a two-dimensional (2-D) global transport model. Hydrogen mole fractions exhibit well-defined seasonal cycles in each hemisphere with their phase difference being only about 3 months. The global production rate of H(2) is estimated to be 103 +/- 10 Tg yr(-1) with only a small estimated interannual variation. Soil uptake ( 84 +/- 8 Tg yr(-1)) represents the major loss process for H(2) and accounts for 81% of the total destruction. Strong seasonal cycles are deduced for the soil uptake of H(2). The soil sink is a maximum over the northern extratropics in summer and peaks only 2 to 3 months earlier in the Northern Hemisphere than in the Southern Hemisphere. Oxidation by tropospheric OH (18 +/- 3 Tg yr(-1)) accounts for 17% of the destruction, with the remainder due to destruction in the stratosphere. The calculated global burden is 191 +/- 29 Tg, indicating an overall atmospheric lifetime of 1.8 +/- 0.3 years. Hydrogen in the troposphere ( 149 +/- 23 Tg burden) has a lifetime of 1.4 +/- 0.2 years.

2005
Prinn, RG, Huang J, Weiss RF, Cunnold DM, Fraser PJ, Simmonds PG, McCulloch A, Harth C, Reimann S, Salameh P, O'Doherty S, Wang RHJ, Porter LW, Miller BR, Krummel PB.  2005.  Evidence for variability of atmospheric hydroxyl radicals over the past quarter century. Geophysical Research Letters. 32   10.1029/2004gl022228   AbstractWebsite

The hydroxyl free radical (OH) is the major oxidizing chemical in the atmosphere, destroying about 3.7 petagrams (Pg) of trace gases each year, including many gases involved in ozone depletion, the greenhouse effect and urban air pollution. Measurements of 1,1,1-trichloroethane (methyl chloroform, CH3CCl3), which reacts with OH, provide the most accurate method currently utilized for determining the global behavior of OH. We report that CH3CCl3 levels rose steadily from 1978 to reach a maximum in 1992 and have since decreased rapidly to levels in 2004 about 30% of the levels when measurements began in 1978. Analysis of these observations shows that global average OH levels had a small maximum around 1989 and a larger minimum around 1998, with OH concentrations in 2003 being comparable to those in 1979. This post-1998 recovery of OH reported here contrasts with the situation 4 years ago when reported OH was decreasing. The 1997-1999 OH minimum coincides with, and is likely caused by, major global wildfires and an intense El Nino event at this time.