Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Fang, XK, Park S, Saito T, Tunnicliffe R, Ganesan AL, Rigby M, Li SL, Yokouchi Y, Fraser PJ, Harth CM, Krummel PB, Muhle J, O'Doherty S, Salameh PK, Simmonds PG, Weiss RF, Young D, Lunt MF, Manning AJ, Gressentl A, Prinn RG.  2019.  Rapid increase in ozone-depleting chloroform emissions from China. Nature Geoscience. 12:89-+.   10.1038/s41561-018-0278-2   AbstractWebsite

Chloroform contributes to the depletion of the stratospheric ozone layer. However, due to its short lifetime and predominantly natural sources, it is not included in the Montreal Protocol that regulates the production and uses of ozone-depleting substances. Atmospheric chloroform mole fractions were relatively stable or slowly decreased during 1990-2010. Here we show that global chloroform mole fractions increased after 2010, based on in situ chloroform measurements at seven stations around the world. We estimate that the global chloroform emissions grew at the rate of 3.5% yr(-1) between 2010 and 2015 based on atmospheric model simulations. We used two regional inverse modelling approaches, combined with observations from East Asia, to show that emissions from eastern China grew by 49 (41-59) Gg between 2010 and 2015, a change that could explain the entire increase in global emissions. We suggest that if chloroform emissions continuously grow at the current rate, the recovery of the stratospheric ozone layer above Antarctica could be delayed by several years.

2016
Vollmer, MK, Muhle J, Trudinger CM, Rigby M, Montzka SA, Harth CM, Miller BR, Henne S, Krummel PB, Hall BD, Young D, Kim J, Arduini J, Wenger A, Yao B, Reimann S, O'Doherty S, Maione M, Etheridge DM, Li SL, Verdonik DP, Park S, Dutton G, Steele LP, Lunder CR, Rhee TS, Hermansen O, Schmidbauer N, Wang RHJ, Hill M, Salameh PK, Langenfelds RL, Zhou LX, Blunier T, Schwander J, Elkins JW, Butler JH, Simmonds PG, Weiss RF, Prinn RG, Fraser PJ.  2016.  Atmospheric histories and global emissions of halons H-1211 (CBrClF2), H-1301 (CBrF3), and H-2402 (CBrF2CBrF2). Journal of Geophysical Research-Atmospheres. 121:3663-3686.   10.1002/2015jd024488   AbstractWebsite

We report ground-based atmospheric measurements and emission estimates for the halons H-1211 (CBrClF2), H-1301 (CBrF3), and H-2402 (CBrF2CBrF2) from the AGAGE (Advanced Global Atmospheric Gases Experiment) and the National Oceanic and Atmospheric Administration global networks. We also include results from archived air samples in canisters and from polar firn in both hemispheres, thereby deriving an atmospheric record of nearly nine decades (1930s to present). All three halons were absent from the atmosphere until approximate to 1970, when their atmospheric burdens started to increase rapidly. In recent years H-1211 and H-2402 mole fractions have been declining, but H-1301 has continued to grow. High-frequency observations show continuing emissions of H-1211 and H-1301 near most AGAGE sites. For H-2402 the only emissions detected were derived from the region surrounding the Sea of Japan/East Sea. Based on our observations, we derive global emissions using two different inversion approaches. Emissions for H-1211 declined from a peak of 11ktyr(-1) (late 1990s) to 3.9ktyr(-1) at the end of our record (mean of 2013-2015), for H-1301 from 5.4ktyr(-1) (late 1980s) to 1.6ktyr(-1), and for H-2402 from 1.8ktyr(-1) (late 1980s) to 0.38ktyr(-1). Yearly summed halon emissions have decreased substantially; nevertheless, since 2000 they have accounted for approximate to 30% of the emissions of all major anthropogenic ozone depletion substances, when weighted by ozone depletion potentials.