Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2010
Muhle, J, Ganesan AL, Miller BR, Salameh PK, Harth CM, Greally BR, Rigby M, Porter LW, Steele LP, Trudinger CM, Krummel PB, O'Doherty S, Fraser PJ, Simmonds PG, Prinn RG, Weiss RF.  2010.  Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane. Atmospheric Chemistry and Physics. 10:5145-5164.   10.5194/acp-10-5145-2010   AbstractWebsite

We present atmospheric baseline growth rates from the 1970s to the present for the long-lived, strongly infrared-absorbing perfluorocarbons (PFCs) tetrafluoromethane (CF(4)), hexafluoroethane (C(2)F(6)), and octafluoropropane (C(3)F(8)) in both hemispheres, measured with improved accuracies (similar to 1-2%) and precisions (<0.3%, or <0.2 ppt (parts per trillion dry air mole fraction), for CF(4); <1.5%, or <0.06 ppt, for C(2)F(6); <4.5%, or <0.02 ppt, for C3F8) within the Advanced Global Atmospheric Gases Experiment (AGAGE). Pre-industrial background values of 34.7 +/- 0.2 ppt CF(4) and 0.1 +/- 0.02 ppt C(2)F(6) were measured in air extracted from Greenland ice and Antarctic firn. Anthropogenic sources are thought to be primary aluminum production (CF(4), C(2)F(6), C(3)F(8)), semiconductor production (C(2)F(6), CF(4), C(3)F(8)) and refrigeration use (C(3)F(8)). Global emissions calculated with the AGAGE 2-D 12-box model are significantly higher than most previous emission estimates. The sum of CF(4) and C(2)F(6) emissions estimated from aluminum production and non-metal production are lower than observed global top-down emissions, with gaps of similar to 6 Gg/yr CF(4) in recent years. The significant discrepancies between previous CF(4), C(2)F(6), and C(3)F(8) emission estimates and observed global top-down emissions estimated from AGAGE measurements emphasize the need for more accurate, transparent, and complete emission reporting, and for verification with atmospheric measurements to assess the emission sources of these long-lived and potent greenhouse gases, which alter the radiative budget of the atmosphere, essentially permanently, once emitted.

2009
Petrenko, VV, Smith AM, Brook EJ, Lowe D, Riedel K, Brailsford G, Hua Q, Schaefer H, Reeh N, Weiss RF, Etheridge D, Severinghaus JP.  2009.  14CH4 measurements in Greenland ice: investigating last glacial termination CH4 sources. Science. 324:506-508.   10.1126/science.1168909   AbstractWebsite

The cause of a large increase of atmospheric methane concentration during the Younger Dryas-Preboreal abrupt climatic transition (similar to 11,600 years ago) has been the subject of much debate. The carbon-14 (C-14) content of methane ((CH4)-C-14) should distinguish between wetland and clathrate contributions to this increase. We present measurements of (CH4)-C-14 in glacial ice, targeting this transition, performed by using ice samples obtained from an ablation site in west Greenland. Measured (CH4)-C-14 values were higher than predicted under any scenario. Sample (CH4)-C-14 appears to be elevated by direct cosmogenic C-14 production in ice. C-14 of CO was measured to better understand this process and correct the sample (CH4)-C-14. Corrected results suggest that wetland sources were likely responsible for the majority of the Younger Dryas-Preboreal CH4 rise.

2008
Petrenko, VV, Severinghaus JP, Brook EJ, Muhle J, Headly M, Harth CM, Schaefer H, Reeh N, Weiss RF, Lowe D, Smith AM.  2008.  A novel method for obtaining very large ancient air samples from ablating glacial ice for analyses of methane radiocarbon. Journal of Glaciology. 54:233-244.   10.3189/002214308784886135   AbstractWebsite

We present techniques for obtaining large (similar to 100 L STP) samples of ancient air for analysis of (14)C of methane ((14)CH(4)) and other trace constituents. Paleoatmospheric (14)CH(4) measurements should constrain the fossil fraction of past methane budgets, as well as provide a definitive test of methane clathrate involvement in large and rapid methane concentration ([CH(4)]) increases that accompanied rapid warming events during the last deglaciation. Air dating to the Younger Dryas-Preboreal and Oldest Dryas-Bolling abrupt climatic transitions was obtained by melt extraction from old glacial ice outcropping at an ablation margin in West Greenland. The outcropping ice and occluded air were dated using a combination of delta(15)N of N(2), delta(18)O of O(2), delta(18)O(ice) and [CH(4)] measurements. The [CH(4)] blank of the melt extractions was <4 ppb. Measurements of delta(18)O and delta(15)N indicated no significant gas isotopic fractionation from handling. Measured Ar/N(2), CFC-11 and CFC-12 in the samples indicated no significant contamination from ambient air. Ar/N(2), Kr/Ar and Xe/Ar ratios in the samples were used to quantify effects of gas dissolution during the melt extractions and correct the sample [CH(4)]. Corrected [CH(4)] is elevated over expected values by up to 132 ppb for most samples, suggesting some in situ CH(4) production in ice at this site.