Publications

Export 28 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Simmonds, PG, Derwent RG, Manning AJ, Fraser PJ, Krummel PB, O'Doherty S, Prinn RG, Cunnold DM, Miller BR, Wang HJ, Ryall DB, Porter LW, Weiss RF, Salameh PK.  2004.  AGAGE observations of methyl bromide and methyl chloride at Mace Head, Ireland, and Cape Grim, Tasmania, 1998-2001. Journal of Atmospheric Chemistry. 47:243-269.   10.1023/B:JOCH.0000021136.52340.9c   AbstractWebsite

In situ AGAGE GC-MS measurements of methyl bromide (CH3Br) and methyl chloride (CH3Cl) at Mace Head, Ireland and Cape Grim, Tasmania (1998-2001) reveal a complex pattern of sources. At Mace Head both gases have well-defined seasonal cycles with similar average annual decreases of 3.0% yr(-1) (CH3Br) and 2.6% yr(-1) (CH3Cl), and mean northern hemisphere baseline mole fractions of 10.37 +/- 0.05 ppt and 535.7 +/- 2.2 ppt, respectively. We have used a Lagrangian dispersion model and local meteorological data to segregate the Mace Head observations into different source regions, and interpret the results in terms of the known sources and sinks of these two key halocarbons. At Cape Grim CH3Br and CH3Cl also show annual decreases in their baseline mixing ratios of 2.5% yr(-1) and 1.5% yr(-1), respectively. Mean baseline mole fractions were 7.94 +/- 0.03 ppt (CH3Br) and 541.3 +/- 1.1 ppt (CH3Cl). Although CH3Cl has a strong seasonal cycle there is no well-defined seasonal cycle in the Cape Grim CH3Br record. The fact that both gases are steadily decreasing in the atmosphere at both locations implies that a change has occurred which is affecting a common, major source of both gases (possibly biomass burning) and/or their major sink process (destruction by hydroxyl radical).

Vollmer, MK, Young D, Trudinger CM, Muhle J, Henne S, Rigby M, Park S, Li S, Guillevic M, Mitrevski B, Harth CM, Miller BR, Reimann S, Yao B, Steele LP, Wyss SA, Lunder CR, Arduini J, McCulloch A, Wu S, Rhee TS, Wang RHJ, Salameh PK, Hermansen O, Hill M, Langenfelds RL, Ivy D, O'Doherty S, Krummel PB, Maione M, Etheridge DM, Zhou LX, Fraser PJ, Prinn RG, Weiss RF, Simmonds PG.  2018.  Atmospheric histories and emissions of chlorofluorocarbons CFC-13 (CClF3), Sigma CFC-114 (C2Cl2F4), and CFC-115 (C2ClF5). Atmospheric Chemistry and Physics. 18:979-1002.   10.5194/acp-18-979-2018   AbstractWebsite

Based on observations of the chlorofluorocarbons CFC-13 (chlorotrifluoromethane), Sigma CFC-114 (combined measurement of both isomers of dichlorotetrafluoroethane), and CFC-115 (chloropentafluoroethane) in atmospheric and firn samples, we reconstruct records of their tropospheric histories spanning nearly 8 decades. These compounds were measured in polar firn air samples, in ambient air archived in canisters, and in situ at the AGAGE (Advanced Global Atmospheric Gases Experiment) network and affiliated sites. Global emissions to the atmosphere are derived from these observations using an inversion based on a 12-box atmospheric transport model. For CFC-13, we provide the first comprehensive global analysis. This compound increased monotonically from its first appearance in the atmosphere in the late 1950s to a mean global abundance of 3.18 ppt (dry-air mole fraction in parts per trillion, pmol mol(-1)) in 2016. Its growth rate has decreased since the mid-1980s but has remained at a surprisingly high mean level of 0.02 ppt yr(-1) since 2000, resulting in a continuing growth of CFC-13 in the atmosphere. Sigma CFC-114 increased from its appearance in the 1950s to a maximum of 16.6 ppt in the early 2000s and has since slightly declined to 16.3 ppt in 2016. CFC-115 increased monotonically from its first appearance in the 1960s and reached a global mean mole fraction of 8.49 ppt in 2016. Growth rates of all three compounds over the past years are significantly larger than would be expected from zero emissions. Under the assumption of unchanging lifetimes and atmospheric transport patterns, we derive global emissions from our measurements, which have remained unexpectedly high in recent years: mean yearly emissions for the last decade (2007-2016) of CFC-13 are at 0.48 +/- 0.15 kt yr(-1) (> 15% of past peak emissions), of 6 CFC-114 at 1.90 +/- 0.84 kt yr(-1) (similar to 10% of peak emissions), and of CFC-115 at 0.80 +/- 0.50 kt yr(-1) (> 5% of peak emissions). Mean yearly emissions of CFC-115 for 2015-2016 are 1.14 +/- 0.50 kt yr(-1) and have doubled compared to the 2007-2010 minimum. We find CFC-13 emissions from aluminum smelters but if extrapolated to global emissions, they cannot account for the lingering global emissions determined from the atmospheric observations. We find impurities of CFC-115 in the refrigerant HFC-125 (CHF2CF3) but if extrapolated to global emissions, they can neither account for the lingering global CFC-115 emissions determined from the atmospheric observations nor for their recent increases. We also conduct regional inversions for the years 2012-2016 for the northeastern Asian area using observations from the Korean AGAGE site at Gosan and find significant emissions for Sigma CFC-114 and CFC-115, suggesting that a large fraction of their global emissions currently occur in northeastern Asia and more specifically on the Chinese mainland.

Vollmer, MK, Muhle J, Trudinger CM, Rigby M, Montzka SA, Harth CM, Miller BR, Henne S, Krummel PB, Hall BD, Young D, Kim J, Arduini J, Wenger A, Yao B, Reimann S, O'Doherty S, Maione M, Etheridge DM, Li SL, Verdonik DP, Park S, Dutton G, Steele LP, Lunder CR, Rhee TS, Hermansen O, Schmidbauer N, Wang RHJ, Hill M, Salameh PK, Langenfelds RL, Zhou LX, Blunier T, Schwander J, Elkins JW, Butler JH, Simmonds PG, Weiss RF, Prinn RG, Fraser PJ.  2016.  Atmospheric histories and global emissions of halons H-1211 (CBrClF2), H-1301 (CBrF3), and H-2402 (CBrF2CBrF2). Journal of Geophysical Research-Atmospheres. 121:3663-3686.   10.1002/2015jd024488   AbstractWebsite

We report ground-based atmospheric measurements and emission estimates for the halons H-1211 (CBrClF2), H-1301 (CBrF3), and H-2402 (CBrF2CBrF2) from the AGAGE (Advanced Global Atmospheric Gases Experiment) and the National Oceanic and Atmospheric Administration global networks. We also include results from archived air samples in canisters and from polar firn in both hemispheres, thereby deriving an atmospheric record of nearly nine decades (1930s to present). All three halons were absent from the atmosphere until approximate to 1970, when their atmospheric burdens started to increase rapidly. In recent years H-1211 and H-2402 mole fractions have been declining, but H-1301 has continued to grow. High-frequency observations show continuing emissions of H-1211 and H-1301 near most AGAGE sites. For H-2402 the only emissions detected were derived from the region surrounding the Sea of Japan/East Sea. Based on our observations, we derive global emissions using two different inversion approaches. Emissions for H-1211 declined from a peak of 11ktyr(-1) (late 1990s) to 3.9ktyr(-1) at the end of our record (mean of 2013-2015), for H-1301 from 5.4ktyr(-1) (late 1980s) to 1.6ktyr(-1), and for H-2402 from 1.8ktyr(-1) (late 1980s) to 0.38ktyr(-1). Yearly summed halon emissions have decreased substantially; nevertheless, since 2000 they have accounted for approximate to 30% of the emissions of all major anthropogenic ozone depletion substances, when weighted by ozone depletion potentials.

Vollmer, MK, Miller BR, Rigby M, Reimann S, Muhle J, Krummel PB, O'Doherty S, Kim J, Rhee TS, Weiss RF, Fraser PJ, Simmonds PG, Salameh PK, Harth CM, Wang RHJ, Steele LP, Young D, Lunder CR, Hermansen O, Ivy D, Arnold T, Schmidbauer N, Kim KR, Greally BR, Hill M, Leist M, Wenger A, Prinn RG.  2011.  Atmospheric histories and global emissions of the anthropogenic hydrofluorocarbons HFC-365mfc, HFC-245fa, HFC-227ea, and HFC-236fa. Journal of Geophysical Research-Atmospheres. 116   10.1029/2010jd015309   AbstractWebsite

We report on ground-based atmospheric measurements and emission estimates of the four anthropogenic hydrofluorocarbons (HFCs) HFC-365mfc (CH(3)CF(2)CH(2)CF(3), 1,1,1,3,3-pentafluorobutane), HFC-245fa (CHF(2)CH(2)CF(3), 1,1,1,3,3-pentafluoropropane), HFC-227ea (CF(3)CHFCF(3), 1,1,1,2,3,3,3-heptafluoropropane), and HFC-236fa (CF(3)CH(2)CF(3), 1,1,1,3,3,3-hexafluoropropane). In situ measurements are from the global monitoring sites of the Advanced Global Atmospheric Gases Experiment (AGAGE), the System for Observations of Halogenated Greenhouse Gases in Europe (SOGE), and Gosan (South Korea). We include the first halocarbon flask sample measurements from the Antarctic research stations King Sejong and Troll. We also present measurements of archived air samples from both hemispheres back to the 1970s. We use a two-dimensional atmospheric transport model to simulate global atmospheric abundances and to estimate global emissions. HFC-365mfc and HFC-245fa first appeared in the atmosphere only similar to 1 decade ago; they have grown rapidly to globally averaged dry air mole fractions of 0.53 ppt (in parts per trillion, 10(-12)) and 1.1 ppt, respectively, by the end of 2010. In contrast, HFC-227ea first appeared in the global atmosphere in the 1980s and has since grown to similar to 0.58 ppt. We report the first measurements of HFC-236fa in the atmosphere. This long-lived compound was present in the atmosphere at only 0.074 ppt in 2010. All four substances exhibit yearly growth rates of >8% yr(-1) at the end of 2010. We find rapidly increasing emissions for the foam-blowing compounds HFC-365mfc and HFC-245fa starting in similar to 2002. After peaking in 2006 (HFC-365mfc: 3.2 kt yr(-1), HFC-245fa: 6.5 kt yr(-1)), emissions began to decline. Our results for these two compounds suggest that recent estimates from long-term projections (to the late 21st century) have strongly overestimated emissions for the early years of the projections (similar to 2005-2010). Global HFC-227ea and HFC-236fa emissions have grown to average values of 2.4 kt yr(-1) and 0.18 kt y(r-)1 over the 2008-2010 period, respectively.

Ivy, DJ, Arnold T, Harth CM, Steele LP, Muhle J, Rigby M, Salameh PK, Leist M, Krummel PB, Fraser PJ, Weiss RF, Prinn RG.  2012.  Atmospheric histories and growth trends of C4F10, C5F12, C6F14, C7F16 and C8F18. Atmospheric Chemistry and Physics. 12:4313-4325.   10.5194/acp-12-4313-2012   AbstractWebsite

Atmospheric observations and trends are presented for the high molecular weight perfluorocarbons (PFCs): decafluorobutane (C4F10), dodecafluoropentane (C5F12), tetradecafluorohexane (C6F14), hexadecafluoroheptane (C7F16) and octadecafluorooctane (C8F18). Their atmospheric histories are based on measurements of 36 Northern Hemisphere and 46 Southern Hemisphere archived air samples collected between 1973 to 2011 using the Advanced Global Atmospheric Gases Experiment (AGAGE) 'Medusa' preconcentration gas chromatography-mass spectrometry systems. A new calibration scale was prepared for each PFC, with estimated accuracies of 6.8% for C4F10, 7.8% for C5F12, 4.0% for C6F14, 6.6% for C7F16 and 7.9% for C8F18. Based on our observations the 2011 globally averaged dry air mole fractions of these heavy PFCs are: 0.17 parts-per-trillion (ppt, i.e., parts per 10(12)) for C4F10, 0.12 ppt for C5F12, 0.27 ppt for C6F14, 0.12 ppt for C7F16 and 0.09 ppt for C8F18. These atmospheric mole fractions combine to contribute to a global average radiative forcing of 0.35 mW m(-2), which is 6% of the total anthropogenic PFC radiative forcing (Montzka and Reimann, 2011; Oram et al., 2012). The growth rates of the heavy perfluorocarbons were largest in the late 1990s peaking at 6.2 parts per quadrillion (ppq, i.e., parts per 10(15)) per year (yr) for C4F10, at 5.0 ppq yr(-1) for C5F12 and 16.6 ppq yr(-1) for C6F14 and in the early 1990s for C7F16 at 4.7 ppq yr(-1) and in the mid 1990s for C8F18 at 4.8 ppq yr(-1). The 2011 globally averaged mean atmospheric growth rates of these PFCs are subsequently lower at 2.2 ppq yr(-1) for C4F10, 1.4 ppq yr(-1) for C5F12, 5.0 ppq yr(-1) for C6F14, 3.4 ppq yr(-1) for C7F16 and 0.9 ppq yr(-1) for C8F18. The more recent slowdown in the growth rates suggests that emissions are declining as compared to the 1980s and 1990s.

Xiao, X, Prinn RG, Fraser PJ, Weiss RF, Simmonds PG, O'Doherty S, Miller BR, Salameh PK, Harth CM, Krummel PB, Golombek A, Porter LW, Butler JH, Elkins JW, Dutton GS, Hall BD, Steele LP, Wang RHJ, Cunnold DM.  2010.  Atmospheric three-dimensional inverse modeling of regional industrial emissions and global oceanic uptake of carbon tetrachloride. Atmospheric Chemistry and Physics. 10:10421-10434.   10.5194/acp-10-10421-2010   AbstractWebsite

Carbon tetrachloride (CCl(4)) has substantial stratospheric ozone depletion potential and its consumption is controlled under the Montreal Protocol and its amendments. We implement a Kalman filter using atmospheric CCl(4) measurements and a 3-dimensional chemical transport model to estimate the interannual regional industrial emissions and seasonal global oceanic uptake of CCl(4) for the period of 1996-2004. The Model of Atmospheric Transport and Chemistry (MATCH), driven by offline National Center for Environmental Prediction (NCEP) reanalysis meteorological fields, is used to simulate CCl(4) mole fractions and calculate their sensitivities to regional sources and sinks using a finite difference approach. High frequency observations from the Advanced Global Atmospheric Gases Experiment (AGAGE) and the Earth System Research Laboratory (ESRL) of the National Oceanic and Atmospheric Administration (NOAA) and low frequency flask observations are together used to constrain the source and sink magnitudes, estimated as factors that multiply the a priori fluxes. Although industry data imply that the global industrial emissions were substantially declining with large interannual variations, the optimized results show only small interannual variations and a small decreasing trend. The global surface CCl(4) mole fractions were declining in this period because the CCl(4) oceanic and stratospheric sinks exceeded the industrial emissions. Compared to the a priori values, the inversion results indicate substantial increases in industrial emissions originating from the South Asian/Indian and Southeast Asian regions, and significant decreases in emissions from the European and North American regions.

E
Huang, J, Golombek A, Prinn R, Weiss R, Fraser P, Simmonds P, Dlugokencky EJ, Hall B, Elkins J, Steele P, Langenfelds R, Krummel P, Dutton G, Porter L.  2008.  Estimation of regional emissions of nitrous oxide from 1997 to 2005 using multinetwork measurements, a chemical transport model, and an inverse method. Journal of Geophysical Research-Atmospheres. 113   10.1029/2007jd009381   AbstractWebsite

Nitrous oxide (N2O) is an important ozone-depleting gas and greenhouse gas with multiple uncertain emission processes. Global nitrous oxide observations, the Model of Atmospheric Transport and Chemistry (MATCH) and an inverse method were used to optimally estimate N2O emissions from twelve source regions around the globe. MATCH was used with forecast center reanalysis winds at T62 resolution (192 longitude by 94 latitude surface grid, and 28 vertical levels) from 1 July 1996 to 30 June 2006. The average concentrations of N2O in the lowest four layers of the model were then compared with the monthly mean observations from four national/international networks measuring at 65 surface sites. A 12-month-running-mean smoother was applied to both the model results and the observations, due to the fact that the model was not able to reproduce the very small observed seasonal cycles. The inverse method was then used to solve for the time-averaged regional emissions of N2O for two time periods (1 January 1997 to 31 December 2001 and 1 January 2002 to 31 December 2005). The best estimate inversions assume that the model stratospheric destruction rates, which lead to a global N2O lifetime of 125 years, are correct. It also assumes normalized emission spatial distributions within each region from Bouwman et al. (1995). We conclude that global N2O emissions with 66% probability errors are 16.3(-1.2)(+1.5) and 15.4(-1.3)(+1.7) TgN (N2O) a(-1), for 1997-2001 and 2001-2005 respectively. Emissions from the equator to 30 degrees N increased significantly from the initial Bouwman et al. (1995) estimates while emissions from southern oceans (30 degrees S-90 degrees S) decreased significantly. The quoted uncertainties include both the measurement errors and modeling uncertainties estimated using a separate flexible 12-box model. We also found that 23 +/- 4% of the N2O global total emissions come from the ocean, which is slightly smaller than the Bouwman et al. (1995) estimate. For the estimation of emissions from the twelve model regions, we conclude that, relative to Bouwman et al. (1995), land emissions from South America, Africa, and China/Japan/South East Asia are larger, while land emissions from Australia/New Zealand are smaller. Our study also shows a shift of the oceanic sources from the extratropical to the tropical oceans relative to Bouwman et al. (1995). Between the periods 1997-2001 and 2002-2005, emissions increased in China/Japan/South East Asia, 0 degrees-30 degrees N oceans, and North West Asia and decreased in Australia/New Zealand, 30 degrees S-90 degrees S oceans, 30 degrees N-90 degrees N oceans, and Africa. The lower tropical ocean emissions in 1997-2001 relative to 2002-2005 could result from the effects of the 1997-1998 El Nino in the earlier period.

Prinn, RG, Huang J, Weiss RF, Cunnold DM, Fraser PJ, Simmonds PG, McCulloch A, Harth C, Salameh P, O'Doherty S, Wang RHJ, Porter L, Miller BR.  2001.  Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades. Science. 292:1882-1888.   10.1126/science.1058673   AbstractWebsite

The hydroxyl radical (OH) is the dominant oxidizing chemical in the atmosphere. It destroys most air pollutants and many gases involved in ozone depletion and the greenhouse effect. Global measurements of 1,1,1-trichloroethane (CH3CCl3, methyl chloroform) provide an accurate method for determining the global and hemispheric behavior of OH. Measurements show that CH3CCl3 Levels rose steadily from 1978 to reach a maximum in 1992 and then decreased rapidly to levels in 2000 that were Lower than the levels when measurements began in 1978. Analysis of these observations shows that global OH Levels were growing between 1978 and 1988, but the growth rate was decreasing at a rate of 0.23 +/- 0.18% year(-2), so that OH Levels began declining after 1988. Overall, the global average OH trend between 1978 and 2000 was -0.64 +/- 0.60% year(-1). These variations imply important and unexpected gaps in current understanding of the capability of the atmosphere to cleanse itself.

Prinn, RG, Huang J, Weiss RF, Cunnold DM, Fraser PJ, Simmonds PG, McCulloch A, Harth C, Reimann S, Salameh P, O'Doherty S, Wang RHJ, Porter LW, Miller BR, Krummel PB.  2005.  Evidence for variability of atmospheric hydroxyl radicals over the past quarter century. Geophysical Research Letters. 32   10.1029/2004gl022228   AbstractWebsite

The hydroxyl free radical (OH) is the major oxidizing chemical in the atmosphere, destroying about 3.7 petagrams (Pg) of trace gases each year, including many gases involved in ozone depletion, the greenhouse effect and urban air pollution. Measurements of 1,1,1-trichloroethane (methyl chloroform, CH3CCl3), which reacts with OH, provide the most accurate method currently utilized for determining the global behavior of OH. We report that CH3CCl3 levels rose steadily from 1978 to reach a maximum in 1992 and have since decreased rapidly to levels in 2004 about 30% of the levels when measurements began in 1978. Analysis of these observations shows that global average OH levels had a small maximum around 1989 and a larger minimum around 1998, with OH concentrations in 2003 being comparable to those in 1979. This post-1998 recovery of OH reported here contrasts with the situation 4 years ago when reported OH was decreasing. The 1997-1999 OH minimum coincides with, and is likely caused by, major global wildfires and an intense El Nino event at this time.

G
Saikawa, E, Rigby M, Prinn RG, Montzka SA, Miller BR, Kuijpers LJM, Fraser PJB, Vollmer MK, Saito T, Yokouchi Y, Harth CM, Muhle J, Weiss RF, Salameh PK, Kim J, Li S, Park S, Kim KR, Young D, O'Doherty S, Simmonds PG, McCulloch A, Krummel PB, Steele LP, Lunder C, Hermansen O, Maione M, Arduini J, Yao B, Zhou LX, Wang HJ, Elkins JW, Hall B.  2012.  Global and regional emission estimates for HCFC-22. Atmospheric Chemistry and Physics. 12:10033-10050.   10.5194/acp-12-10033-2012   AbstractWebsite

HCFC-22 (CHClF2, chlorodifluoromethane) is an ozone-depleting substance (ODS) as well as a significant greenhouse gas (GHG). HCFC-22 has been used widely as a refrigerant fluid in cooling and air-conditioning equipment since the 1960s, and it has also served as a traditional substitute for some chlorofluorocarbons (CFCs) controlled under the Montreal Protocol. A low frequency record on tropospheric HCFC-22 since the late 1970s is available from measurements of the Southern Hemisphere Cape Grim Air Archive (CGAA) and a few Northern Hemisphere air samples (mostly from Trinidad Head) using the Advanced Global Atmospheric Gases Experiment (AGAGE) instrumentation and calibrations. Since the 1990s high-frequency, high-precision, in situ HCFC-22 measurements have been collected at these AGAGE stations. Since 1992, the Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) has also collected flasks on a weekly basis from remote sites across the globe and analyzed them for a suite of halocarbons including HCFC-22. Additionally, since 2006 flasks have been collected approximately daily at a number of tower sites across the US and analyzed for halocarbons and other gases at NOAA. All results show an increase in the atmospheric mole fractions of HCFC-22, and recent data show a growth rate of approximately 4% per year, resulting in an increase in the background atmospheric mole fraction by a factor of 1.7 from 1995 to 2009. Using data on HCFC-22 consumption submitted to the United Nations Environment Programme (UNEP), as well as existing bottom-up emission estimates, we first create globally-gridded a priori HCFC-22 emissions over the 15 yr since 1995. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4), and a Bayesian inverse method to estimate global as well as regional annual emissions. Our inversion indicates that the global HCFC-22 emissions have an increasing trend between 1995 and 2009. We further find a surge in HCFC-22 emissions between 2005 and 2009 from developing countries in Asia - the largest emitting region including China and India. Globally, substantial emissions continue despite production and consumption being phased out in developed countries currently.

Xiang, B, Patra PK, Montzka SA, Miller SM, Elkins JW, Moore FL, Atlas EL, Miller BR, Weiss RF, Prinn RG, Wofsy SC.  2014.  Global emissions of refrigerants HCFC-22 and HFC-134a: Unforeseen seasonal contributions. Proceedings of the National Academy of Sciences of the United States of America. 111:17379-17384.   10.1073/pnas.1417372111   AbstractWebsite

HCFC-22 (CHClF2) and HFC-134a (CH2FCF3) are two major gases currently used worldwide in domestic and commercial refrigeration and air conditioning. HCFC-22 contributes to stratospheric ozone depletion, and both species are potent greenhouse gases. In this work, we study in situ observations of HCFC-22 and HFC-134a taken from research aircraft over the Pacific Ocean in a 3-y span [Hlaper-Pole-to-Pole Observations (HIPPO) 2009-2011] and combine these data with long-term ground observations from global surface sites [ National Oceanic and Atmospheric Administration (NOAA) and Advanced Global Atmospheric Gases Experiment (AGAGE) networks]. We find the global annual emissions of HCFC-22 and HFC-134a have increased substantially over the past two decades. Emissions of HFC-134a are consistently higher compared with the United Nations Framework Convention on Climate Change (UNFCCC) inventory since 2000, by 60% more in recent years (2009-2012). Apart from these decadal emission constraints, we also quantify recent seasonal emission patterns showing that summertime emissions of HCFC-22 and HFC-134a are two to three times higher than wintertime emissions. This unforeseen large seasonal variation indicates that unaccounted mechanisms controlling refrigerant gas emissions are missing in the existing inventory estimates. Possible mechanisms enhancing refrigerant losses in summer are (i) higher vapor pressure in the sealed compartment of the system at summer high temperatures and (ii) more frequent use and service of refrigerators and air conditioners in summer months. Our results suggest that engineering (e. g., better temperature/vibration-resistant system sealing and new system design of more compact/efficient components) and regulatory (e. g., reinforcing system service regulations) steps to improve containment of these gases from working devices could effectively reduce their release to the atmosphere.

Simmonds, PG, Cunnold DM, Weiss RF, Prinn RG, Fraser PJ, McCulloch A, Alyea FN, O'Doherty S.  1998.  Global trends and emission estimates of CCl4 from in situ background observations from July 1978 to June 1996. Journal of Geophysical Research-Atmospheres. 103:16017-16027.   10.1029/98jd01022   AbstractWebsite

Atmospheric Lifetime Experiment/Global Atmospheric Gases Experiment/Advanced Global Atmospheric Gases Experiment (ALE/GAGE/AGAGE) measurements of CCl4 at five remote surface locations from 1978 to 1996 are reported. The Scripps Institution of Oceanography (SIO) 1993 absolute calibration scale is used, reducing the concentrations by a factor of 0.77 compared to previous ALE/GAGE reports. Atmospheric concentrations of CCl4 reached a peak in 1989-1990 of 104.4 +/-. 3.1 parts per trillion (ppt) and have since been decreasing 0.7 +/-. 0.1 ppt yr(-1). Assuming an atmospheric lifetime of 42 +/- 12 years, the emissions averaged 94(+22)(-11) x 10(6) kg from 1979 to 1988 and 49(+26)(-13) x 10(6) kg from 1991 to 1995. The reduction in the emissions in 1989-1990 coincided with a substantial decrease in the global production of the chlorofluorocarbons (CFCs). The total emission of CCl4 from countries that report annual production is estimated to have declined from 11% in 1972 to 4% in 1995 of the CCl4 needed to produce the CFC amounts reported. This implies that nonreporting countries released substantial amounts of CCl4 into the atmosphere in the 1980s and that their releases have exceeded those from the reporting countries since 1991.

Simmonds, PG, Manning AJ, Cunnold DM, McCulloch A, O'Doherty S, Derwent RG, Krummel PB, Fraser PJ, Dunse B, Porter LW, Wang RHJ, Greally BR, Miller BR, Salameh P, Weiss RF, Prinn RG.  2006.  Global trends, seasonal cycles, and European emissions of dichloromethane, trichloroethene, and tetrachloroethene from the AGAGE observations at Mace Head, Ireland, and Cape Grim, Tasmania. Journal of Geophysical Research-Atmospheres. 111   10.1029/2006jd007082   AbstractWebsite

[1] In situ observations ( every 4 hours) of dichloromethane (CH(2)Cl(2)) from April 1995 to December 2004 and trichloroethene (C(2)HCl(3)) and tetrachloroethene (C(2)Cl(4)) from September 2000 to December 2004 are reported for the Advanced Global Atmospheric Gases Experiment (AGAGE) station at Mace Head, Ireland. At a second AGAGE station at Cape Grim, Tasmania, CH(2)Cl(2) and C(2)Cl(4) data collection commenced in 1998 and 2000, respectively. C(2)HCl(3) is below the limit of detection at Cape Grim except during pollution episodes. At Mace Head CH(2)Cl(2) shows a downward trend from 1995 to 2004 of 0.7 +/- 0.2 ppt yr(-1) ( ppt: expressed as dry mole fractions in 10(12)), although from 1998 to 2004 the decrease has been only 0.3 +/- 0.1ppt yr(-1). Conversely, there has been a small but significant growth of 0.05 +/- 0.01 ppt yr(-1) in CH(2)Cl(2) at Cape Grim. The time series for C(2)HCl(3) and C(2)Cl(4) are relatively short for accurate trend analyses; however, we observe a small but significant decline in C(2)Cl(4) (0.18 +/- 0.05 ppt yr(-1)) at Mace Head. European emissions inferred from AGAGE measurements are compared to recent estimates from industry data and show general agreement for C(2)HCl(3). Emissions estimated from observations are lower than industry emission estimates for C(2)Cl(4) and much lower in the case of CH(2)Cl(2). A study of wildfires in Tasmania, uncontaminated by urban emissions, suggests that the biomass burning source of CH(2)Cl(2) may have been previously overestimated. All three solvents have distinct annual cycles, with the phases and amplitudes reflecting their different chemical reactivity with OH as the primary sink.

H
Arnold, T, Ivy DJ, Harth CM, Vollmer MK, Muhle J, Salameh PK, Steele LP, Krummel PB, Wang RHJ, Young D, Lunder CR, Hermansen O, Rhee TS, Kim J, Reimann S, O'Doherty S, Fraser PJ, Simmonds PG, Prinn RG, Weiss RF.  2014.  HFC-43-10mee atmospheric abundances and global emission estimates. Geophysical Research Letters. 41:2228-2235.   10.1002/2013gl059143   AbstractWebsite

We report in situ atmospheric measurements of hydrofluorocarbon HFC-43-10mee (C5H2F10; 1,1,1,2,2,3,4,5,5,5-decafluoropentane) from seven observatories at various latitudes, together with measurements of archived air samples and recent Antarctic flask air samples. The global mean tropospheric abundance was 0.210.05ppt (parts per trillion, dry air mole fraction) in 2012, rising from 0.040.03ppt in 2000. We combine the measurements with a model and an inverse method to estimate rising global emissionsfrom 0.430.34Ggyr(-1) in 2000 to 1.130.31Ggyr(-1) in 2012 (similar to 1.9TgCO(2)-eqyr(-1) based on a 100year global warming potential of 1660). HFC-43-10meea cleaning solvent used in the electronics industryis currently a minor contributor to global radiative forcing relative to total HFCs; however, our calculated emissions highlight a significant difference from the available reported figures and projected estimates.

Stohl, A, Kim J, Li S, O'Doherty S, Muhle J, Salameh PK, Saito T, Vollmer MK, Wan D, Weiss RF, Yao B, Yokouchi Y, Zhou LX.  2010.  Hydrochlorofluorocarbon and hydrofluorocarbon emissions in East Asia determined by inverse modeling. Atmospheric Chemistry and Physics. 10:3545-3560.   10.5194/acp-10-3545-2010   AbstractWebsite

The emissions of three hydrochlorofluorocarbons, HCFC-22 (CHClF(2)), HCFC-141b (CH(3)CCl(2)F) and HCFC-142b (CH(3)CClF(2)) and three hydrofluorocarbons, HFC-23 (CHF(3)), HFC-134a (CH(2)FCF(3)) and HFC-152a (CH(3)CHF(2)) from four East Asian countries and the Taiwan region for the year 2008 are determined by inverse modeling. The inverse modeling is based on in-situ measurements of these halocarbons at the Japanese stations Cape Ochi-ishi and Hateruma, the Chinese station Shangdianzi and the South Korean station Gosan. For every station and every 3 h, 20-day backward calculations were made with the Lagrangian particle dispersion model FLEXPART. The model output, the measurement data, bottom-up emission information and corresponding uncertainties were fed into an inversion algorithm to determine the regional emission fluxes. The model captures the observed variation of halocarbon mixing ratios very well for the two Japanese stations but has difficulties explaining the large observed variability at Shangdianzi, which is partly caused by small-scale transport from Beijing that is not adequately captured by the model. Based on HFC-23 measurements, the inversion algorithm could successfully identify the locations of factories known to produce HCFC-22 and emit HFC-23 as an unintentional byproduct. This lends substantial credibility to the inversion method. We report national emissions for China, North Korea, South Korea and Japan, as well as emissions for the Taiwan region. Halocarbon emissions in China are much larger than the emissions in the other countries together and contribute a substantial fraction to the global emissions. Our estimates of Chinese emissions for the year 2008 are 65.3 +/- 6.6 kt/yr for HCFC-22 (17% of global emissions extrapolated from Montzka et al., 2009), 12.1 +/- 1.6 kt/yr for HCFC-141b (22%), 7.3 +/- 0.7 kt/yr for HCFC-142b (17%), 6.2 +/- 0.7 kt/yr for HFC-23 (> 50%), 12.9 +/- 1.7 kt/yr for HFC-134a (9% of global emissions estimated from Velders et al., 2009) and 3.4 +/- 0.5 kt/yr for HFC-152a (7%).

I
Simmonds, PG, Manning AJ, Athanassiadou M, Scaife AA, Derwent RG, O'Doherty S, Harth CM, Weiss RF, Dutton GS, Hall BD, Sweeney C, Elkins JW.  2013.  Interannual fluctuations in the seasonal cycle of nitrous oxide and chlorofluorocarbons due to the Brewer-Dobson circulation. Journal of Geophysical Research-Atmospheres. 118:10694-10706.   10.1002/jgrd.50832   AbstractWebsite

The tropospheric seasonal cycles of N2O, CFC-11 (CCl3F), and CFC-12 (CCl2F2) are influenced by atmospheric dynamics. The interannually varying summertime minima in mole fractions of these trace gases have been attributed to interannual variations in mixing of stratospheric air (depleted in CFCs and N2O) with tropospheric air with a few months lag. The amount of wave activity that drives the stratospheric circulation and influences the winter stratospheric jet and subsequent mass transport across the tropopause appears to be the primary cause of this interannual variability. We relate the observed seasonal minima of species at three Northern Hemisphere sites (Mace Head, Ireland; Trinidad Head, U.S.; and Barrow, Alaska) with the behavior of the winter stratospheric jet. As a result, a good correlation is obtained between zonal winds in winter at 10 hPa, 58°N–68°N, and the detrended seasonal minima in the stratosphere-influenced tracers. For these three tracers, individual Pearson correlation coefficients (r) between 0.51 and 0.71 were found, with overall correlations of between 0.67 and 0.77 when “composite species” were considered. Finally, we note that the long-term observations of CFCs and N2O in the troposphere provide an independent monitoring method complementary to satellite data. Furthermore, they could provide a useful observational measure of the strength of stratosphere-troposphere exchange and, thus, could be used to monitor any long-term trend in the Brewer-Dobson circulation which is predicted by climate models to increase over the coming decades.

Arnold, T, Manning AJ, Kim J, Li SL, Webster H, Thomson D, Muhle J, Weiss RF, Park S, O'Doherty S.  2018.  Inverse modelling of CF4 and NF3 emissions in East Asia. Atmospheric Chemistry and Physics. 18:13305-13320.   10.5194/acp-18-13305-2018   AbstractWebsite

Decadal trends in the atmospheric abundances of carbon tetrafluoride (CF4) and nitrogen trifluoride (NF3) have been well characterised and have provided a time series of global total emissions. Information on locations of emissions contributing to the global total, however, is currently poor. We use a unique set of measurements between 2008 and 2015 from the Gosan station, Jeju Island, South Korea (part of the Advanced Global Atmospheric Gases Experiment network), together with an atmospheric transport model, to make spatially disaggregated emission estimates of these gases in East Asia. Due to the poor availability of good prior information for this study, our emission estimates are largely influenced by the atmospheric measurements. Notably, we are able to highlight emission hotspots of NF3 and CF4 in South Korea due to the measurement location. We calculate emissions of CF4 to be quite constant between the years 2008 and 2015 for both China and South Korea, with 2015 emissions calculated at 4.3 +/- 2.7 and 0.36 +/- 0.11 Gg yr(-1), respectively. Emission estimates of NF3 from South Korea could be made with relatively small uncertainty at 0.6 +/- 0.07 Gg yr(-1) in 2015, which equates to similar to 1.6% of the country's CO2 emissions. We also apply our method to calculate emissions of CHF3 (HFC-23) between 2008 and 2012, for which our results find good agreement with other studies and which helps support our choice in methodology for CF4 and NF3.

M
Miller, BR, Weiss RF, Salameh PK, Tanhua T, Greally BR, Muhle J, Simmonds PG.  2008.  Medusa: A sample preconcentration and GC/MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds. Analytical Chemistry. 80:1536-1545.   10.1021/ac702084k   AbstractWebsite

Significant changes have occurred in the anthropogenic emissions of many compounds related to the Kyoto and Montreal Protocols within the past 20 years and many of their atmospheric abundances have responded dramatically. Additionally, there are a number of related natural compounds with underdetermined source or sink budgets. A new instrument, Medusa, was developed to make the high frequency in situ measurements required for the determination of the atmospheric lifetimes and emissions of these compounds. This automated system measures a wide range of halocarbons, hydrocarbons, and sulfur compounds involved in ozone depletion and/or climate forcing, from the very volatile perfluorocarbons (PFCs, e.g., CF(4) and CF(3)CF(3)) and hydrofluorocarbons (HFCs, e.g., CH(3)CF(3)) to the higher-boiling point solvents (such as CH(3)CCl(3) and CCl(2)= CCl(2)) and CHBr(3). A network of Medusa systems worldwide provides 12 in situ ambient air measurements per day of more than 38 compounds of part per trillion mole fractions and precisions up to 0.1% RSD at the five remote field stations operated by the Advanced Global Atmospheric Gases Experiment (AGAGE). Ihis custom system couples gas chromatography/mass spectrometry (GC/MSD) with a novel scheme for cryogen-free low-temperature preconcentration (-165 degrees C) of analytes from 2 L samples in a two-trap process using HayeSep D adsorbent.

Chipperfield, MP, Liang Q, Rigby M, Hossaini R, Montzka SA, Dhomse S, Feng WH, Prinn RG, Weiss RF, Harth CM, Salameh PK, Muhle J, O'Doherty S, Young D, Simmonds PG, Krummel PB, Fraser PJ, Steele LP, Happell JD, Rhew RC, Butler J, Yvon-Lewis SA, Hall B, Nance D, Moore F, Miller BR, Elkins J, Harrison JJ, Boone CD, Atlas EL, Mahieu E.  2016.  Model sensitivity studies of the decrease in atmospheric carbon tetrachloride. Atmospheric Chemistry and Physics. 16:15741-15754.   10.5194/acp-16-15741-2016   AbstractWebsite

Carbon tetrachloride (CCl4) is an ozone-depleting substance, which is controlled by the Montreal Protocol and for which the atmospheric abundance is decreasing. However, the current observed rate of this decrease is known to be slower than expected based on reported CCl4 emissions and its estimated overall atmospheric lifetime. Here we use a three-dimensional (3-D) chemical transport model to investigate the impact on its predicted decay of uncertainties in the rates at which CCl4 is removed from the atmosphere by photolysis, by ocean uptake and by degradation in soils. The largest sink is atmospheric photolysis (74% of total), but a reported 10% uncertainty in its combined photolysis cross section and quantum yield has only a modest impact on the modelled rate of CCl4 decay. This is partly due to the limiting effect of the rate of transport of CCl4 from the main tropospheric reservoir to the stratosphere, where photolytic loss occurs. The model suggests large interannual variability in the magnitude of this stratospheric photolysis sink caused by variations in transport. The impact of uncertainty in the minor soil sink (9% of total) is also relatively small. In contrast, the model shows that uncertainty in ocean loss (17% of total) has the largest impact on modelled CCl4 decay due to its sizeable contribution to CCl4 loss and large lifetime uncertainty range (147 to 241 years). With an assumed CCl4 emission rate of 39 Gg year(-1), the reference simulation with the best estimate of loss processes still underestimates the observed CCl4 (overestimates the decay) over the past 2 decades but to a smaller extent than previous studies. Changes to the rate of CCl4 loss processes, in line with known uncertainties, could bring the model into agreement with in situ surface and remote-sensing measurements, as could an increase in emissions to around 47 Gg year(-1). Further progress in constraining the CCl4 budget is partly limited by systematic biases between observational datasets. For example, surface observations from the National Oceanic and Atmospheric Administration (NOAA) network are larger than from the Advanced Global Atmospheric Gases Experiment (AGAGE) network but have shown a steeper decreasing trend over the past 2 decades. These differences imply a difference in emissions which is significant relative to uncertainties in the magnitudes of the CCl4 sinks.

O
Greally, BR, Manning AJ, Reimann S, McCulloch A, Huang J, Dunse BL, Simmonds PG, Prinn RG, Fraser PJ, Cunnold DM, O'Doherty S, Porter LW, Stemmler K, Vollmer MK, Lunder CR, Schmidbauer N, Hermansen O, Arduini J, Salameh PK, Krummel PB, Wang RHJ, Folini D, Weiss RF, Maione M, Nickless G, Stordal F, Derwent RG.  2007.  Observations of 1,1-difluoroethane (HFC-152a) at AGAGE and SOGE monitoring stations in 1994-2004 and derived global and regional emission estimates. Journal of Geophysical Research-Atmospheres. 112   10.1029/2006jd007527   AbstractWebsite

[1] Ground-based in situ measurements of 1,1-difluoroethane (HFC-152a, CH3CHF2) which is regulated under the Kyoto Protocol are reported under the auspices of the AGAGE (Advanced Global Atmospheric Gases Experiment) and SOGE (System of Observation of halogenated Greenhouse gases in Europe) programs. Observations of HFC-152a at five locations (four European and one Australian) over a 10 year period were recorded. The annual average growth rate of HFC-152a in the midlatitude Northern Hemisphere has risen from 0.11 ppt/yr to 0.6 ppt/yr from 1994 to 2004. The Southern Hemisphere annual average growth rate has risen from 0.09 ppt/yr to 0.4 ppt/yr from 1998 to 2004. The 2004 average mixing ratio for HFC-152a was 5.0 ppt and 1.8 ppt in the Northern and Southern hemispheres, respectively. The annual cycle observed for this species in both hemispheres is approximately consistent with measured annual cycles at the same locations in other gases which are destroyed by OH. Yearly global emissions of HFC-152a from 1994 to 2004 are derived using the global mean HFC-152a observations and a 12-box 2-D model. The global emission of HFC-152a has risen from 7 Kt/yr to 28 Kt/yr from 1995 to 2004. On the basis of observations of above-baseline elevations in the HFC-152a record and a consumption model, regional emission estimates for Europe and Australia are calculated, indicating accelerating emissions from Europe since 2000. The overall European emission in 2004 ranges from 1.5 to 4.0 Kt/year, 5-15% of global emissions for 1,1-difluoroethane, while the Australian contribution is negligible at 5-10 tonnes/year, < 0.05% of global emissions.

Reimann, S, Elkins JW, Fraser PJ, Hall BD, Kurylo MJ, Mahieu E, Montzka SA, Prinn RG, Rigby M, Simmonds PG, Weiss RF.  2018.  Observing the atmospheric evolution of ozone-depleting substances. Comptes Rendus Geoscience. 350:384-392.   10.1016/j.crte.2018.08.008   AbstractWebsite

The atmospheric observations of ozone-depleting substances (ODSs) have been essential for following their atmospheric response to the production and use restrictions imposed by the Montreal Protocol and its Amendments and Adjustments. ODSs have been used since the first half of the 20th century in industrial and domestic applications. However, their atmospheric growth went unnoticed until the early 1970s, when they were discovered using gas chromatograph-electron capture detection (GC-ECD) instruments. Similar instrumentation formed the basis of global flask and in situ measurements commenced by NOAA and ALE/GAGE/AGAGE in the late 1970s. The combination of these networks, supported by a number of other laboratories, has been essential for following the tropospheric trends of ODSs. Additionally, ground-based remote sensing measurements within NDACC and aircraft-based observation programs have been crucial for measuring the evolution of the ODS abundances over the entire atmosphere. Maintaining these networks at least at their current state is vital for ensuring the on-going verification of the success of the Montreal Protocol. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Xiao, X, Prinn RG, Fraser PJ, Simmonds PG, Weiss RF, O'Doherty S, Miller BR, Salameh PK, Harth CM, Krummel PB, Porter LW, Muhle J, Greally BR, Cunnold D, Wang R, Montzka SA, Elkins JW, Dutton GS, Thompson TM, Butler JH, Hall BD, Reimann S, Vollmer MK, Stordal F, Lunder C, Maione M, Arduini J, Yokouchi Y.  2010.  Optimal estimation of the surface fluxes of methyl chloride using a 3-D global chemical transport model. Atmospheric Chemistry and Physics. 10:5515-5533.   10.5194/acp-10-5515-2010   AbstractWebsite

Methyl chloride (CH(3)Cl) is a chlorine-containing trace gas in the atmosphere contributing significantly to stratospheric ozone depletion. Large uncertainties in estimates of its source and sink magnitudes and temporal and spatial variations currently exist. GEIA inventories and other bottom-up emission estimates are used to construct a priori maps of the surface fluxes of CH(3)Cl. The Model of Atmospheric Transport and Chemistry (MATCH), driven by NCEP interannually varying meteorological data, is then used to simulate CH(3)Cl mole fractions and quantify the time series of sensitivities of the mole fractions at each measurement site to the surface fluxes of various regional and global sources and sinks. We then implement the Kalman filter (with the unit pulse response method) to estimate the surface fluxes on regional/global scales with monthly resolution from January 2000 to December 2004. High frequency observations from the AGAGE, SOGE, NIES, and NOAA/ESRL HATS in situ networks and low frequency observations from the NOAA/ESRL HATS flask network are used to constrain the source and sink magnitudes. The inversion results indicate global total emissions around 4100 +/- 470 Ggyr(-1) with very large emissions of 2200 +/- 390 Gg yr(-1) from tropical plants, which turn out to be the largest single source in the CH(3)Cl budget. Relative to their a priori annual estimates, the inversion increases global annual fungal and tropical emissions, and reduces the global oceanic source. The inversion implies greater seasonal and interannual oscillations of the natural sources and sink of CH(3)Cl compared to the a priori. The inversion also reflects the strong effects of the 2002/2003 globally widespread heat waves and droughts on global emissions from tropical plants, biomass burning and salt marshes, and on the soil sink.

Kim, J, Li S, Muhle J, Stohl A, Kim SK, Park S, Park MK, Weiss RF, Kim KR.  2012.  Overview of the findings from measurements of halogenated compounds at Gosan (Jeju Island, Korea) quantifying emissions in East Asia. Journal of Integrative Environmental Sciences. 9:71-80.   10.1080/1943815x.2012.696548   AbstractWebsite

With increased economic growth in East Asia, regional emissions of many anthropogenic halogenated compounds now constitute a substantial fraction of the global totals. Here, we summarize recently reported findings from measurements of a wide range of chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), and other halogenated compounds at Gosan (Jeju Island, Korea) within the advanced global atmospheric gases experiment (AGAGE). General wind patterns at Gosan bring air masses from the surrounding areas, allowing the monitoring of both clean baseline and polluted air masses. We have analyzed our measurements since November 2007 both with an interspecies correlation method and with an inversion method based on the FLEXPART Lagrangian particle dispersion model to estimate these regional emissions. The results show that emissions of halogenated compounds in East Asia account for over 20% of global emissions, both in terms of ozone depletion potential (ODP) and global warming potential (GWP), and emphasize the importance of atmospheric measurements for quantifying emissions of these compounds in this region.

P
Muhle, J, Ganesan AL, Miller BR, Salameh PK, Harth CM, Greally BR, Rigby M, Porter LW, Steele LP, Trudinger CM, Krummel PB, O'Doherty S, Fraser PJ, Simmonds PG, Prinn RG, Weiss RF.  2010.  Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane. Atmospheric Chemistry and Physics. 10:5145-5164.   10.5194/acp-10-5145-2010   AbstractWebsite

We present atmospheric baseline growth rates from the 1970s to the present for the long-lived, strongly infrared-absorbing perfluorocarbons (PFCs) tetrafluoromethane (CF(4)), hexafluoroethane (C(2)F(6)), and octafluoropropane (C(3)F(8)) in both hemispheres, measured with improved accuracies (similar to 1-2%) and precisions (<0.3%, or <0.2 ppt (parts per trillion dry air mole fraction), for CF(4); <1.5%, or <0.06 ppt, for C(2)F(6); <4.5%, or <0.02 ppt, for C3F8) within the Advanced Global Atmospheric Gases Experiment (AGAGE). Pre-industrial background values of 34.7 +/- 0.2 ppt CF(4) and 0.1 +/- 0.02 ppt C(2)F(6) were measured in air extracted from Greenland ice and Antarctic firn. Anthropogenic sources are thought to be primary aluminum production (CF(4), C(2)F(6), C(3)F(8)), semiconductor production (C(2)F(6), CF(4), C(3)F(8)) and refrigeration use (C(3)F(8)). Global emissions calculated with the AGAGE 2-D 12-box model are significantly higher than most previous emission estimates. The sum of CF(4) and C(2)F(6) emissions estimated from aluminum production and non-metal production are lower than observed global top-down emissions, with gaps of similar to 6 Gg/yr CF(4) in recent years. The significant discrepancies between previous CF(4), C(2)F(6), and C(3)F(8) emission estimates and observed global top-down emissions estimated from AGAGE measurements emphasize the need for more accurate, transparent, and complete emission reporting, and for verification with atmospheric measurements to assess the emission sources of these long-lived and potent greenhouse gases, which alter the radiative budget of the atmosphere, essentially permanently, once emitted.

R
Rigby, M, Prinn RG, O'Doherty S, Montzka SA, McCulloch A, Harth CM, Muhle J, Salameh PK, Weiss RF, Young D, Simmonds PG, Hall BD, Dutton GS, Nance D, Mondeel DJ, Elkins JW, Krummel PB, Steele LP, Fraser PJ.  2013.  Re-evaluation of the lifetimes of the major CFCs and CH3CCl3 using atmospheric trends. Atmospheric Chemistry and Physics. 13:2691-2702.   10.5194/acp-13-2691-2013   AbstractWebsite

Since the Montreal Protocol on Substances that Deplete the Ozone Layer and its amendments came into effect, growth rates of the major ozone depleting substances (ODS), particularly CFC-11, -12 and -113 and CH3CCl3, have declined markedly, paving the way for global stratospheric ozone recovery. Emissions have now fallen to relatively low levels, therefore the rate at which this recovery occurs will depend largely on the atmospheric lifetime of these compounds. The first ODS measurements began in the early 1970s along with the first lifetime estimates calculated by considering their atmospheric trends. We now have global mole fraction records spanning multiple decades, prompting this lifetime re-evaluation. Using surface measurements from the Advanced Global Atmospheric Gases Experiment (AGAGE) and the National Oceanic and Atmospheric Administration Global Monitoring Division (NOAA GMD) from 1978 to 2011, we estimated the lifetime of CFC-11, CFC-12, CFC-113 and CH3CCl3 usin!