Export 8 results:
Sort by: Author Title Type [ Year  (Desc)]
Saikawa, E, Prinn RG, Dlugokencky E, Ishijima K, Dutton GS, Hall BD, Langenfelds R, Tohjima Y, Machida T, Manizza M, Rigby M, O'Doherty S, Patra PK, Harth CM, Weiss RF, Krummel PB, van der Schoot M, Fraser PJ, Steele LP, Aoki S, Nakazawa T, Elkins JW.  2014.  Global and regional emissions estimates for N2O. Atmospheric Chemistry and Physics. 14:4617-4641.   10.5194/acp-14-4617-2014   AbstractWebsite

We present a comprehensive estimate of nitrous oxide (N2O) emissions using observations and models from 1995 to 2008. High-frequency records of tropospheric N2O are available from measurements at Cape Grim, Tasmania; Cape Matatula, American Samoa; Ragged Point, Barbados; Mace Head, Ireland; and at Trinidad Head, California using the Advanced Global Atmospheric Gases Experiment (AGAGE) instrumentation and calibrations. The Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) has also collected discrete air samples in flasks and in situ measurements from remote sites across the globe and analyzed them for a suite of species including N2O. In addition to these major networks, we include in situ and aircraft measurements from the National Institute of Environmental Studies (NIES) and flask measurements from the Tohoku University and Commonwealth Scientific and Industrial Research Organization (CSIRO) networks. All measurements show increasing atmospheric mole fractions of N2O, with a varying growth rate of 0.1-0.7% per year, resulting in a 7.4% increase in the background atmospheric mole fraction between 1979 and 2011. Using existing emission inventories as well as bottom-up process modeling results, we first create globally gridded a priori N2O emissions over the 37 years since 1975. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4), and a Bayesian inverse method to estimate global as well as regional annual emissions for five source sectors from 13 regions in the world. This is the first time that all of these measurements from multiple networks have been combined to determine emissions. Our inversion indicates that global and regional N2O emissions have an increasing trend between 1995 and 2008. Despite large uncertainties, a significant increase is seen from the Asian agricultural sector in recent years, most likely due to an increase in the use of nitrogenous fertilizers, as has been suggested by previous studies.

Thompson, RL, Patra PK, Ishijima K, Saikawa E, Corazza M, Karstens U, Wilson C, Bergamaschi P, Dlugokencky E, Sweeney C, Prinn RG, Weiss RF, O'Doherty S, Fraser PJ, Steele LP, Krummel PB, Saunois M, Chipperfield M, Bousquet P.  2014.  TransCom N2O model inter-comparison - Part 1: Assessing the influence of transport and surface fluxes on tropospheric N2O variability. Atmospheric Chemistry and Physics. 14:4349-4368.   10.5194/acp-14-4349-2014   AbstractWebsite

We present a comparison of chemistry-transport models (TransCom-N2O) to examine the importance of atmospheric transport and surface fluxes on the variability of N2O mixing ratios in the troposphere. Six different models and two model variants participated in the inter-comparison and simulations were made for the period 2006 to 2009. In addition to N2O, simulations of CFC-12 and SF6 were made by a subset of four of the models to provide information on the models' proficiency in stratosphere-troposphere exchange (STE) and meridional transport, respectively. The same prior emissions were used by all models to restrict differences among models to transport and chemistry alone. Four different N2O flux scenarios totalling between 14 and 17 TgN yr(-1) (for 2005) globally were also compared. The modelled N2O mixing ratios were assessed against observations from in situ stations, discrete air sampling networks and aircraft. All models adequately captured the large-scale patterns of N2O and the vertical gradient from the troposphere to the stratosphere and most models also adequately captured the N2O tropospheric growth rate. However, all models underestimated the inter-hemispheric N2O gradient by at least 0.33 parts per billion (ppb), equivalent to 1.5 TgN, which, even after accounting for an overestimate of emissions in the Southern Ocean of circa 1.0 TgN, points to a likely underestimate of the Northern Hemisphere source by up to 0.5 TgN and/or an overestimate of STE in the Northern Hemisphere. Comparison with aircraft data reveal that the models over-estimate the amplitude of the N2O seasonal cycle at Hawaii (21 degrees N, 158 degrees W) below circa 6000 m, suggesting an overestimate of the importance of stratosphere to troposphere transport in the lower troposphere at this latitude. In the Northern Hemisphere, most of the models that provided CFC-12 simulations captured the phase of the CFC-12, seasonal cycle, indicating a reasonable representation of the timing of STE. However, for N2O all models simulated a too early minimum by 2 to 3 months owing to errors in the seasonal cycle in the prior soil emissions, which was not adequately represented by the terrestrial biosphere model. In the Southern Hemisphere, most models failed to capture the N2O and CFC-12 seasonality at Cape Grim, Tasmania, and all failed at the South Pole, whereas for SF6, all models could capture the seasonality at all sites, suggesting that there are large errors in modelled vertical transport in high southern latitudes.

Fraser, A, Palmer PI, Feng L, Boesch H, Cogan A, Parker R, Dlugokencky EJ, Fraser PJ, Krummel PB, Langenfelds RL, O'Doherty S, Prinn RG, Steele LP, van der Schoot M, Weiss RF.  2013.  Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements. Atmospheric Chemistry and Physics. 13:5697-5713.   10.5194/acp-13-5697-2013   AbstractWebsite

We use an ensemble Kalman filter (EnKF), together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4) fluxes for the period June 2009-December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4) from GOSAT (Greenhouse gases Observing SATellite) and/or NOAA ESRL (Earth System Research Laboratory) and CSIRO GASLAB (Global Atmospheric Sampling Laboratory) CH4 surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510-516 Tg yr(-1), which is less than, though within the uncertainty of, the prior global flux of 529 +/- 25 Tg yr(-1). We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr(-1)) occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45 %) than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60 degrees associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2) and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs) we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our posterior methane fluxes by incorporating them into GEOS-Chem and sampling the model at the location and time of surface CH4 measurements from the AGAGE (Advanced Global Atmospheric Gases Experiment) network and column XCH4 measurements from TCCON (Total Carbon Column Observing Network). The posterior fluxes modestly improve the model agreement with AGAGE and TCCON data relative to prior fluxes, with the correlation coefficients (r(2)) increasing by a mean of 0.04 (range: -0.17 to 0.23) and the biases decreasing by a mean of 0.4 ppb (range: -8.9 to 8.4 ppb).

Kirschke, S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque JF, Langenfelds RL, Le Quere C, Naik V, O'Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G.  2013.  Three decades of global methane sources and sinks. Nature Geoscience. 6:813-823.   10.1038/ngeo1955   AbstractWebsite

Methane is an important greenhouse gas, responsible for about 20% of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios - which differ in fossil fuel and microbial emissions - to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain.

Alexander, B, Vollmer MK, Jackson T, Weiss RF, Thiemens MH.  2001.  Stratospheric CO2 isotopic anomalies and SF6 and CFC tracer concentrations in the Arctic polar vortex. Geophysical Research Letters. 28:4103-4106.   10.1029/2001gl013692   AbstractWebsite

Isotopic measurements (delta O-17 and delta O-18) Of CO2 along with concentration measurements of SF6, CC1(3)F (CFC-11), CC1(2)F(2) (CFC-12) and CC1(2)FCC1F(2) (CFC-113) in stratospheric samples collected within the Arctic polar vortex are reported. These are the first simultaneous measurements of the concentration of fluorinated compounds and the complete oxygen isotopic composition Of CO2 in the middle atmosphere. A mass-independent anomaly in the oxygen isotopic composition Of CO2 is observed that arises from isotopic exchange with stratospheric O(D-1) derived from O-3 photolysis. The data exhibit a strong anti-correlation between the Delta O-17 (the degree of the mass-independent anomaly) and molecular tracer concentrations. The potential ability of tl-ris isotopic proxy to trace mesospheric and stratospheric transport is discussed.

Fraser, P, Cunnold D, Alyea F, Weiss R, Prinn R, Simmonds P, Miller B, Langenfelds R.  1996.  Lifetime and emission estimates of 1,1,2-trichlorotrifluorethane (CFC-113) from daily global background observations June 1982 June 1994. Journal of Geophysical Research-Atmospheres. 101:12585-12599.   10.1029/96jd00574   AbstractWebsite

Observations every two hours of CCl2FCClF2 at Mace Head, Ireland (February 1987-June 1994); Cape Meares, Oregon (April 1984-June 1989); Ragged Point, Barbados (October 1985-June 1994); Cape Matatula, Samoa (October 1985-June 1989 and January 1992-June 1994); and Cape Grim, Tasmania (June 1982-June 1994) are reported, The observations from Cape Grim have been extended back to 1978 using archived air samples. The global atmospheric abundance of CCl2FCClF2 is indicated to have been growing exponentially between 1978 and 1987 with an e-folding time of approximately 7.6 years; it has been growing less rapidly since that time. On January 1, 1994, the mean inferred northern hemispheric mixing ratio in the lower troposphere was 84.4 +/- 0.4 ppt and the southern hemispheric value was 80.6 +/- 0.4 ppt; the global growth rate in 1991-1993 is estimated to have averaged approximately 3.1 +/- 0.1 ppt/year. The differences between the northern and southern hemispheric concentrations are calculated to be consistent with the almost entirely northern hemispheric release of this gas. The annual release estimates of CCl2FCClF2 by industry, which include estimates of eastern European emissions, fairly consistently exceed those deduced from the measurements by approximately 10% from 1980 to 1993. The uncertainties in each estimate is approximately 5%. This difference suggests that up to 10% of past production might not yet have been released. The measurements indicate that atmospheric releases of CCl2FCClF2 have been decreasing rapidly since 1989 and in 1993 amounted to 78 +/- 27 x 10(6) kg or 42 +/- 15% of the 1985-1987 emissions.

Landrum, LL, Gammon RH, Feely RA, Murphy PP, Kelly KC, Cosca CE, Weiss RF.  1996.  North Pacific Ocean CO2 disequilibrium for spring through summer, 1985-1989. Journal of Geophysical Research-Oceans. 101:28539-28555.   10.1029/96jc02100   AbstractWebsite

Extensive measurements of CO2 fugacity in the North Pacific surface ocean and overlying atmosphere during the years 1985-1989 are synthesized and interpreted to yield a basin-wide estimate of Delta fCO(2). The observations, taken from February through early September, suggest that the subtropical and subarctic North Pacific is a small sink for atmospheric CO2 (0.07 to 0.2 Gton C (half year)(-1) for the region north of 15 degrees N). Objective analysis techniques are used to estimate uncertainty fields resulting from constructing basin-wide contours of oceanic fCO(2) on the basis of individual cruise transects. The uncertainties are significant and imply that future sampling programs need to recognize that estimating oceanic uptake of anthropogenic CO2 from ship-transect observations of oceanic fCO(2) alone will require very extensive sampling.

Prinn, RG, Weiss RF, Miller BR, Huang J, Alyea FN, Cunnold DM, Fraser PJ, Hartley DE, Simmonds PG.  1995.  Atmospheric trends and lifetime of CH3CCI3 and global OH concentrations . Science. 269:187-192.   10.1126/science.269.5221.187   AbstractWebsite

Determination of the atmospheric concentrations and lifetime of trichloroethane (CH3CCl3) is very important in the context of global change. This halocarbon is involved in depletion of ozone, and the hydroxyl radical (OH) concentrations determined from its lifetime provide estimates of the lifetimes of most other hydrogen-containing gases involved in the ozone layer and climate. Global measurements of trichloroethane indicate rising concentrations before and declining concentrations after late 1991. The lifetime of CH3CCl3 in the total atmosphere is 4.8 +/- 0.3 years, which is substantially lower than previously estimated. The deduced hydroxyl radical concentration, which measures the atmosphere's oxidizing capability, shows little change from 1978 to 1994.