Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2010
Xiao, X, Prinn RG, Fraser PJ, Simmonds PG, Weiss RF, O'Doherty S, Miller BR, Salameh PK, Harth CM, Krummel PB, Porter LW, Muhle J, Greally BR, Cunnold D, Wang R, Montzka SA, Elkins JW, Dutton GS, Thompson TM, Butler JH, Hall BD, Reimann S, Vollmer MK, Stordal F, Lunder C, Maione M, Arduini J, Yokouchi Y.  2010.  Optimal estimation of the surface fluxes of methyl chloride using a 3-D global chemical transport model. Atmospheric Chemistry and Physics. 10:5515-5533.   10.5194/acp-10-5515-2010   AbstractWebsite

Methyl chloride (CH(3)Cl) is a chlorine-containing trace gas in the atmosphere contributing significantly to stratospheric ozone depletion. Large uncertainties in estimates of its source and sink magnitudes and temporal and spatial variations currently exist. GEIA inventories and other bottom-up emission estimates are used to construct a priori maps of the surface fluxes of CH(3)Cl. The Model of Atmospheric Transport and Chemistry (MATCH), driven by NCEP interannually varying meteorological data, is then used to simulate CH(3)Cl mole fractions and quantify the time series of sensitivities of the mole fractions at each measurement site to the surface fluxes of various regional and global sources and sinks. We then implement the Kalman filter (with the unit pulse response method) to estimate the surface fluxes on regional/global scales with monthly resolution from January 2000 to December 2004. High frequency observations from the AGAGE, SOGE, NIES, and NOAA/ESRL HATS in situ networks and low frequency observations from the NOAA/ESRL HATS flask network are used to constrain the source and sink magnitudes. The inversion results indicate global total emissions around 4100 +/- 470 Ggyr(-1) with very large emissions of 2200 +/- 390 Gg yr(-1) from tropical plants, which turn out to be the largest single source in the CH(3)Cl budget. Relative to their a priori annual estimates, the inversion increases global annual fungal and tropical emissions, and reduces the global oceanic source. The inversion implies greater seasonal and interannual oscillations of the natural sources and sink of CH(3)Cl compared to the a priori. The inversion also reflects the strong effects of the 2002/2003 globally widespread heat waves and droughts on global emissions from tropical plants, biomass burning and salt marshes, and on the soil sink.

2000
Prinn, RG, Weiss RF, Fraser PJ, Simmonds PG, Cunnold DM, Alyea FN, O'Doherty S, Salameh P, Miller BR, Huang J, Wang RHJ, Hartley DE, Harth C, Steele LP, Sturrock G, Midgley PM, McCulloch A.  2000.  A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. Journal of Geophysical Research-Atmospheres. 105:17751-17792.   10.1029/2000jd900141   AbstractWebsite

We describe in detail the instrumentation and calibrations used in the Atmospheric Lifetime Experiment (ALE), the Global Atmospheric Cases Experiment (GAGE), and the Advanced Global Atmospheric Gases Experiment (AGAGE) and present a history of the majority of the anthropogenic ozone-depleting and climate-forcing gases in air based on these experiments. Beginning in 1978, these three successive automated high-frequency in situ experiments have documented the long-term behavior of the measured concentrations of these gases over the past 20 years, and show both the evolution of latitudinal gradients and the high-frequency variability due to sources and circulation. We provide estimates of the long-term trends in total chlorine contained in long-lived halocarbons involved in ozone depletion. We summarize interpretations of these measurements using inverse methods to determine trace gas lifetimes and emissions. Finally, we provide a combined observational and modeled reconstruction of the evolution of chlorocarbons by latitude in the atmosphere over the past 60 years which can be used as boundary conditions for interpreting trapped air in glaciers and oceanic measurements of chlorocarbon tracers of the deep oceanic circulation. Some specific conclusions are as follows: (1) International compliance with the Montreal Protocol is so far resulting in chlorofluorocarbon and chlorocarbon mole fractions comparable to target levels; (2) mole fractions of total chlorine contained in long-lived halocarbons (CCl2F2, CCl3F, CH3CCl3, CCl4, CHClF2, CCl2FCClF2, CH3Cl, CH2Cl2, CHCl3, CCl2=CCl2) in the lower troposphere reached maximum values of about 3.6 ppb in 1993 and are beginning to slowly decrease in the global lower atmosphere; (3) the chlorofluorocarbons have atmospheric lifetimes consistent with destruction in the stratosphere being their principal removal mechanism; (4) multiannual variations in chlorofluorocarbon and chlorocarbon emissions deduced from ALE/GAGE/AGAGE data are consistent approximately with variations estimated independently from industrial production and sales data where available (CCl2F2 (CFC-12) and CCl2FCClF2 (CFC-113) show the greatest discrepancies); (5) the mole fractions of the hydrochlorofluorocarbons and hydrofluorocarbons, which are replacing the regulated halocarbons, are rising very rapidly in the atmosphere, but with the exception of the much longer manufactured CHClF2 (HCFC-22), they are not yet at levels sufficient to contribute significantly to atmospheric chlorine loading. These replacement species could in the future provide independent estimates of the global weighted-average OH concentration provided their industrial emissions are accurately documented; (6) in the future, analysis of pollution events measured using high-frequency in situ measurements of chlorofluorocarbons and their replacements may enable emission estimates at the regional level, which, together with industrial end-use data, are of sufficient accuracy to he capable of identifying regional noncompliance with the Montreal Protocol.