Export 8 results:
Sort by: Author Title Type [ Year  (Desc)]
Prinn, RG, Weiss RF, Arduini J, Arnold T, DeWitt HL, Fraser PJ, Ganesan AL, Gasore J, Harth CM, Hermansen O, Kim J, Krummel PB, Li SL, Loh ZM, Lunder CR, Maione M, Manning AJ, Miller B, Mitrevski B, Muhle J, O'Doherty S, Park S, Reimann S, Rigby M, Saito T, Salameh PK, Schmidt R, Simmonds PG, Steele LP, Vollmer MK, Wang RH, Yao B, Yokouchi Y, Young D, Zhou LX.  2018.  History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE). Earth System Science Data. 10:985-1018.   10.5194/essd-10-985-2018   AbstractWebsite

We present the organization, instrumentation, datasets, data interpretation, modeling, and accomplishments of the multinational global atmospheric measurement program AGAGE (Advanced Global Atmospheric Gases Experiment). AGAGE is distinguished by its capability to measure globally, at high frequency, and at multiple sites all the important species in the Montreal Protocol and all the important non-carbon-dioxide (non-CO2) gases assessed by the Intergovernmental Panel on Climate Change (CO2 is also measured at several sites). The scientific objectives of AGAGE are important in furthering our understanding of global chemical and climatic phenomena. They are the following: (1) to accurately measure the temporal and spatial distributions of anthropogenic gases that contribute the majority of reactive halogen to the stratosphere and/or are strong infrared absorbers (chlorocarbons, chlorofluorocarbons CFCs, bromocarbons, hydrochlorofluorocarbons HCFCs, hydrofluorocarbons HFCs and polyfluorinated compounds (perfluorocarbons PFCs), nitrogen trifluoride NF3, sulfuryl fluoride SO2F2, and sulfur hexafluoride SF6) and use these measurements to determine the global rates of their emission and/or destruction (i.e., lifetimes); (2) to accurately measure the global distributions and temporal behaviors and determine the sources and sinks of non-CO2 biogenic anthropogenic gases important to climate change and/or ozone depletion (methane CH4, nitrous oxide N20, carbon monoxide CO, molecular hydrogen H2, methyl chloride CH3C1, and methyl bromide CH3Br); (3) to identify new long-lived greenhouse and ozone -depleting gases (e.g., SO2F2, NF3, heavy PFCs (C4Fm, C5F12, C6F 14, C7F16, and C8F18) and hydrofluoroolefins (HF0s; e.g., CH2 = CFCF3) have been identified in AGAGE), initiate the real-time monitoring of these new gases, and reconstruct their past histories from AGAGE, air archive, and firn air measurements; (4) to determine the average concentrations and trends of tropospheric hydroxyl radicals (OH) from the rates of destruction of atmospheric trichloroethane (CH3CC13), HFCs, and HCFCs and estimates of their emissions; (5) to determine from atmospheric observations and estimates of their destruction rates the magnitudes and distributions by region of surface sources and sinks of all measured gases; (6) to provide accurate data on the global accumulation of many of these trace gases that are used to test the synoptic-, regional-, and global -scale circulations predicted by three-dimensional models; and (7) to provide global and regional measurements of methane, carbon monoxide, and molecular hydrogen and estimates of hydroxyl levels to test primary atmospheric oxidation pathways at midlatitudes and the tropics. Network Information and Data Repository: or (

Dalsoren, SB, Myhre CL, Myhre G, Gomez-Pelaez AJ, Sovde OA, Isaksen ISA, Weiss RF, Harth CM.  2016.  Atmospheric methane evolution the last 40 years. Atmospheric Chemistry and Physics. 16:3099-3126.   10.5194/acp-16-3099-2016   AbstractWebsite

Observations at surface sites show an increase in global mean surface methane (CH4) of about 180 parts per billion (ppb) (above 10 %) over the period 1984-2012. Over this period there are large fluctuations in the annual growth rate. In this work, we investigate the atmospheric CH4 evolution over the period 1970-2012 with the Oslo CTM3 global chemical transport model (CTM) in a bottom-up approach. We thoroughly assess data from surface measurement sites in international networks and select a subset suited for comparisons with the output from the CTM. We compare model results and observations to understand causes for both long-term trends and short-term variations. Employing Oslo CTM3 we are able to reproduce the seasonal and year-to-year variations and shifts between years with consecutive growth and stagnation, both at global and regional scales. The overall CH4 trend over the period is reproduced, but for some periods the model fails to reproduce the strength of the growth. The model overestimates the observed growth after 2006 in all regions. This seems to be explained by an overly strong increase in anthropogenic emissions in Asia, having global impact. Our findings confirm other studies questioning the timing or strength of the emission changes in Asia in the EDGAR v4.2 emission inventory over recent decades. The evolution of CH4 is not only controlled by changes in sources, but also by changes in the chemical loss in the atmosphere and soil uptake. The atmospheric CH4 lifetime is an indicator of the CH4 loss. In our simulations, the atmospheric CH4 lifetime decreases by more than 8 % from 1970 to 2012, a significant reduction of the residence time of this important greenhouse gas. Changes in CO and NOx emissions, specific humidity, and ozone column drive most of this, and we provide simple prognostic equations for the relations between those and the CH4 lifetime. The reduced lifetime results in substantial growth in the chemical CH4 loss (relative to its burden) and dampens the CH4 growth.

Fortems-Cheiney, A, Saunois M, Pison I, Chevallier F, Bousquet P, Cressot C, Montzka SA, Fraser PJ, Vollmer MK, Simmonds PG, Young D, O'Doherty S, Weiss RF, Artuso F, Barletta B, Blake DR, Li S, Lunder C, Miller BR, Park S, Prinn R, Saito T, Steele LP, Yokouchi Y.  2015.  Increase in HFC-134a emissions in response to the success of the Montreal Protocol. Journal of Geophysical Research-Atmospheres. 120   10.1002/2015jd023741   AbstractWebsite

The 1,1,1,2-tetrafluoroethane (HFC-134a), an important alternative to CFC-12 in accordance with the Montreal Protocol on Substances that Deplete the Ozone Layer, is a high global warming potential greenhouse gas. Here we evaluate variations in global and regional HFC-134a emissions and emission trends, from 1995 to 2010, at a relatively high spatial and temporal (3.75 degrees in longitude x 2.5 degrees in latitude and 8 day) resolution, using surface HFC-134a measurements. Our results show a progressive increase of global HFC-134a emissions from 19 +/- 2 Gg/yr in 1995 to 167 +/- 5 Gg/yr in 2010, with both a slowdown in developed countries and a 20%/yr increase in China since 2005. A seasonal cycle is also seen since 2002, which becomes enhanced over time, with larger values during the boreal summer.

Patra, PK, Krol MC, Montzka SA, Arnold T, Atlas EL, Lintner BR, Stephens BB, Xiang B, Elkins JW, Fraser PJ, Ghosh A, Hintsa EJ, Hurst DF, Ishijima K, Krummel PB, Miller BR, Miyazaki K, Moore FL, Muhle J, O'Doherty S, Prinn RG, Steele LP, Takigawa M, Wang HJ, Weiss RF, Wofsy SC, Young D.  2014.  Observational evidence for interhemispheric hydroxyl-radical parity. Nature. 513:219-+.   10.1038/nature13721   AbstractWebsite

The hydroxyl radical (OH) is a key oxidant involved in the removal of air pollutants and greenhouse gases from the atmosphere(1-3). The ratio of Northern Hemispheric to Southern Hemispheric (NH/SH) OH concentration is important for our understanding of emission estimates of atmospheric species such as nitrogen oxides and methane(4-6). It remains poorly constrained, however, with a range of estimates from 0.85 to 1.4 (refs 4,7-10). Here we determine the NH/SH ratio of OH with the help of methyl chloroform data (a proxy for OH concentrations) and an atmospheric transport model that accurately describes interhemispheric transport and modelled emissions. We find that for the years 2004-2011 the model predicts an annual mean NH-SH gradient of methyl chloroform that is a tight linear function of the modelled NH/SH ratio in annual mean OH. We estimate a NH/SH OH ratio of 0.97 +/- 0.12 during this time period by optimizing global total emissions and mean OH abundance to fit methyl chloroform data from two surface-measurement networks and aircraft campaigns(11-13). Our findings suggest that top-down emission estimates of reactive species such as nitrogen oxides in key emitting countries in the NH that are based on a NH/SH OH ratio larger than 1 may be overestimated.

Kirschke, S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque JF, Langenfelds RL, Le Quere C, Naik V, O'Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G.  2013.  Three decades of global methane sources and sinks. Nature Geoscience. 6:813-823.   10.1038/ngeo1955   AbstractWebsite

Methane is an important greenhouse gas, responsible for about 20% of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios - which differ in fossil fuel and microbial emissions - to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain.

Rigby, M, Prinn RG, Fraser PJ, Simmonds PG, Langenfelds RL, Huang J, Cunnold DM, Steele LP, Krummel PB, Weiss RF, O'Doherty S, Salameh PK, Wang HJ, Harth CM, Muhle J, Porter LW.  2008.  Renewed growth of atmospheric methane. Geophysical Research Letters. 35   10.1029/2008gl036037   AbstractWebsite

Following almost a decade with little change in global atmospheric methane mole fraction, we present measurements from the Advanced Global Atmospheric Gases Experiment (AGAGE) and the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO) networks that show renewed growth starting near the beginning of 2007. Remarkably, a similar growth rate is found at all monitoring locations from this time until the latest measurements. We use these data, along with an inverse method applied to a simple model of atmospheric chemistry and transport, to investigate the possible drivers of the rise. Specifically, the relative roles of an increase in emission rate or a decrease in concentration of the hydroxyl radical, the largest methane sink, are examined. We conclude that: 1) if the annual mean hydroxyl radical concentration did not change, a substantial increase in emissions was required simultaneously in both hemispheres between 2006 and 2007; 2) if a small drop in the hydroxyl radical concentration occurred, consistent with AGAGE methyl chloroform measurements, the emission increase is more strongly biased to the Northern Hemisphere. Citation: Rigby, M., et al. (2008), Renewed growth of atmospheric methane, Geophys. Res. Lett., 35, L22805, doi: 10.1029/2008GL036037.

Miller, BR, Weiss RF, Salameh PK, Tanhua T, Greally BR, Muhle J, Simmonds PG.  2008.  Medusa: A sample preconcentration and GC/MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds. Analytical Chemistry. 80:1536-1545.   10.1021/ac702084k   AbstractWebsite

Significant changes have occurred in the anthropogenic emissions of many compounds related to the Kyoto and Montreal Protocols within the past 20 years and many of their atmospheric abundances have responded dramatically. Additionally, there are a number of related natural compounds with underdetermined source or sink budgets. A new instrument, Medusa, was developed to make the high frequency in situ measurements required for the determination of the atmospheric lifetimes and emissions of these compounds. This automated system measures a wide range of halocarbons, hydrocarbons, and sulfur compounds involved in ozone depletion and/or climate forcing, from the very volatile perfluorocarbons (PFCs, e.g., CF(4) and CF(3)CF(3)) and hydrofluorocarbons (HFCs, e.g., CH(3)CF(3)) to the higher-boiling point solvents (such as CH(3)CCl(3) and CCl(2)= CCl(2)) and CHBr(3). A network of Medusa systems worldwide provides 12 in situ ambient air measurements per day of more than 38 compounds of part per trillion mole fractions and precisions up to 0.1% RSD at the five remote field stations operated by the Advanced Global Atmospheric Gases Experiment (AGAGE). Ihis custom system couples gas chromatography/mass spectrometry (GC/MSD) with a novel scheme for cryogen-free low-temperature preconcentration (-165 degrees C) of analytes from 2 L samples in a two-trap process using HayeSep D adsorbent.

Prinn, RG, Weiss RF, Miller BR, Huang J, Alyea FN, Cunnold DM, Fraser PJ, Hartley DE, Simmonds PG.  1995.  Atmospheric trends and lifetime of CH3CCI3 and global OH concentrations . Science. 269:187-192.   10.1126/science.269.5221.187   AbstractWebsite

Determination of the atmospheric concentrations and lifetime of trichloroethane (CH3CCl3) is very important in the context of global change. This halocarbon is involved in depletion of ozone, and the hydroxyl radical (OH) concentrations determined from its lifetime provide estimates of the lifetimes of most other hydrogen-containing gases involved in the ozone layer and climate. Global measurements of trichloroethane indicate rising concentrations before and declining concentrations after late 1991. The lifetime of CH3CCl3 in the total atmosphere is 4.8 +/- 0.3 years, which is substantially lower than previously estimated. The deduced hydroxyl radical concentration, which measures the atmosphere's oxidizing capability, shows little change from 1978 to 1994.