Publications

Export 4 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N [O] P Q R S T U V W X Y Z   [Show ALL]
O
O'Doherty, S, Simmonds PG, Cunnold DM, Wang HJ, Sturrock GA, Fraser PJ, Ryall D, Derwent RG, Weiss RF, Salameh P, Miller BR, Prinn RG.  2001.  In situ chloroform measurements at Advanced Global Atmospheric Gases Experiment atmospheric research stations from 1994 to 1998. Journal of Geophysical Research-Atmospheres. 106:20429-20444.   10.1029/2000jd900792   AbstractWebsite

Measurements of atmospheric chloroform (CHCl3) by in situ gas chromatography using electron capture detection are reported from the Advanced Global Atmospheric Gases Experiment (AGAGE) network of atmospheric research stations. They are some of the most comprehensive in situ, high-frequency measurements to be reported for CHCl3 and provide valuable information not only on clean "baseline" mixing ratios but also on local and regional sources. Emissions from these sources cause substantial periodic increases in CHCl3 concentrations above their baseline levels, which can be used to identify source strengths. This is particularly the case for measurements made at Mace Head, Ireland. Furthermore, these local sources of CHCl3 emissions are significant in relation to current estimates of global emissions and illustrate that the understanding of competing sources and sinks of CHCl3 is still fragmentary. These observations also show that CHCl3 has a very pronounced seasonal cycle with a summer minimum and winter maximum presumably resulting from enhanced destruction by OH in the summer. The amplitude of the cycle is dependent on sampling location. Over the 57 months of in situ measurements a global average baseline concentration of 8.9 +/-0.1 ppt was determined with no appreciable trend in the baseline detected.

O'Doherty, S, Cunnold DM, Manning A, Miller BR, Wang RHJ, Krummel PB, Fraser PJ, Simmonds PG, McCulloch A, Weiss RF, Salameh P, Porter LW, Prinn RG, Huang J, Sturrock G, Ryall D, Derwent RG, Montzka SA.  2004.  Rapid growth of hydrofluorocarbon 134a and hydrochlorofluorocarbons 141b, 142b, and 22 from Advanced Global Atmospheric Gases Experiment (AGAGE) observations at Cape Grim, Tasmania, and Mace Head, Ireland. Journal of Geophysical Research-Atmospheres. 109   10.1029/2003jd004277   AbstractWebsite

[1] An update of in situ Advanced Global Atmospheric Gases Experiment (AGAGE) hydrofluorocarbon (HFC)/hydrochlorofluorocarbon ( HCFC) measurements made at Mace Head, Ireland, and Cape Grim, Tasmania, from 1998 to 2002 are reported. HCFC-142b, HCFC-141b, HCFC-22 and HFC-134a show continued rapid growth in the atmosphere at mean rates of 1.1, 1.6, 6.0, and 3.4 ppt/year, respectively. Emissions inferred from measurements are compared to recent estimates from consumption data. Minor updates to the industry estimates of emissions are reported together with a discussion of how to best determine OH concentrations from these trace gas measurements. In addition, AGAGE measurements and derived emissions are compared to those deduced from NOAA-Climate Monitoring and Diagnostics Laboratory flask measurements ( which are mostly made at different locations). European emission estimates obtained from Mace Head pollution events using the Nuclear Accident Model ( NAME) dispersion model and the best fit algorithm ( known as simulated annealing) are presented as 3-year rolling average emissions over Europe for the period 1999-2001. Finally, the measurements of HCFC-141b, HCFC-142b, and HCFC-22 discussed in this paper have been combined with the Atmospheric Lifetime Experiment (ALE)/Global Atmospheric Gases Experiment (GAGE)/AGAGE measurements of CFC-11, CFC-12, CFC-113, CCl4, and CH3CCl3 to produce the evolution of tropospheric chlorine loading.

O'Doherty, S, Cunnold DM, Miller BR, Muhle J, McCulloch A, Simmonds PG, Manning AJ, Reimann S, Vollmer MK, Greally BR, Prinn RG, Fraser PJ, Steele LP, Krummel PB, Dunse BL, Porter LW, Lunder CR, Schmidbauer N, Hermansen O, Salameh PK, Harth CM, Wang RHJ, Weiss RF.  2009.  Global and regional emissions of HFC-125 (CHF2CF3) from in situ and air archive atmospheric observations at AGAGE and SOGE observatories. Journal of Geophysical Research-Atmospheres. 114   10.1029/2009jd012184   AbstractWebsite

High-frequency, in situ observations from the Advanced Global Atmospheric Gases Experiment (AGAGE) and System for Observation of halogenated Greenhouse gases in Europe (SOGE) networks for the period 1998 to 2008, combined with archive flask measurements dating back to 1978, have been used to capture the rapid growth of HFC-125 (CHF(2)CF(3)) in the atmosphere. HFC-125 is the fifth most abundant HFC, and it currently makes the third largest contribution of the HFCs to atmospheric radiative forcing. At the beginning of 2008 the global average was 5.6 ppt in the lower troposphere and the growth rate was 16% yr(-1). The extensive observations have been combined with a range of modeling techniques to derive global emission estimates in a top-down approach. It is estimated that 21 kt were emitted globally in 2007, and the emissions are estimated to have increased 15% yr(-1) since 2000. These estimates agree within approximately 20% with values reported to the United Nations Framework Convention on Climate Change (UNFCCC) provided that estimated emissions from East Asia are included. Observations of regionally polluted air masses at individual AGAGE sites have been used to produce emission estimates for Europe (the EU-15 countries), the United States, and Australia. Comparisons between these top-down estimates and bottom-up estimates based on reports by individual countries to the UNFCCC show a range of approximately four in the differences. This process of independent verification of emissions, and an understanding of the differences, is vital for assessing the effectiveness of international treaties, such as the Kyoto Protocol.

O'Doherty, S, Rigby M, Muhle J, Ivy DJ, Miller BR, Young D, Simmonds PG, Reimann S, Vollmer MK, Krummel PB, Fraser PJ, Steele LP, Dunse B, Salameh PK, Harth CM, Arnold T, Weiss RF, Kim J, Park S, Li S, Lunder C, Hermansen O, Schmidbauer N, Zhou LX, Yao B, Wang RHJ, Manning AJ, Prinn RG.  2014.  Global emissions of HFC-143a (CH3CF3) and HFC-32 (CH2F2) from in situ and air archive atmospheric observations. Atmospheric Chemistry and Physics. 14:9249-9258.   10.5194/acp-14-9249-2014   AbstractWebsite

High-frequency, in situ observations from the Advanced Global Atmospheric Gases Experiment (AGAGE), for the period 2003 to 2012, combined with archive flask measurements dating back to 1977, have been used to capture the rapid growth of HFC-143a (CH3CF3) and HFC-32 (CH2F2) mole fractions and emissions into the atmosphere. Here we report the first in situ global measurements of these two gases. HFC-143a and HFC-32 are the third and sixth most abundant hydrofluorocarbons (HFCs) respectively and they currently make an appreciable contribution to the HFCs in terms of atmospheric radiative forcing (1.7 +/- 0.04 and 0.7 +/- 0.02 mW m(-2) in 2012 respectively). In 2012 the global average mole fraction of HFC-143a was 13.4 +/- 0.3 ppt (1 sigma) in the lower troposphere and its growth rate was 1.4 +/- 0.04 ppt yr(-1); HFC-32 had a global mean mole fraction of 6.2 +/- 0.2 ppt and a growth rate of 1.1 +/- 0.04 ppt yr(-1) in 2012. The extensive observations presented in this work have been combined with an atmospheric transport model to simulate global atmospheric abundances and derive global emission estimates. It is estimated that 23 +/- 3 Gg yr(-1) of HFC-143a and 21 +/- 11 Gg yr(-1) of HFC-32 were emitted globally in 2012, and the emission rates are estimated to be increasing by 7 +/- 5% yr(-1) for HFC-143a and 14 +/- 11% yr(-1) for HFC-32.