Publications

Export 5 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F [G] H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
G
Ganesan, AL, Chatterjee A, Prinn RG, Harth CM, Salameh PK, Manning AJ, Hall BD, Mühle J, Meredith LK, Weiss RF, O'Doherty S, Young D.  2013.  The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India. Atmos. Chem. Phys.. 13:10633-10644.: Copernicus Publications   10.5194/acp-13-10633-2013   AbstractWebsite

High-frequency atmospheric measurements of methane (CH4), nitrous oxide (N2O) and sulfur hexafluoride (SF6) from Darjeeling, India are presented from December 2011 (CH4)/March 2012 (N2O and SF6) through February 2013. These measurements were made on a gas chromatograph equipped with a flame ionization detector and electron capture detector, and were calibrated on the Tohoku University, the Scripps Institution of Oceanography (SIO)-98 and SIO-2005 scales for CH4, N2O and SF6, respectively. The observations show large variability and frequent pollution events in CH4 and N2O mole fractions, suggesting significant sources in the regions sampled by Darjeeling throughout the year. By contrast, SF6 mole fractions show little variability and only occasional pollution episodes, likely due to weak sources in the region. Simulations using the Numerical Atmospheric dispersion Modelling Environment (NAME) particle dispersion model suggest that many of the enhancements in the three gases result from the transport of pollutants from the densely populated Indo-Gangetic Plains of India to Darjeeling. The meteorology of the region varies considerably throughout the year from Himalayan flows in the winter to the strong south Asian summer monsoon. The model is consistent in simulating a diurnal cycle in CH4 and N2O mole fractions that is present during the winter but absent in the summer and suggests that the signals measured at Darjeeling are dominated by large-scale (~100 km) flows rather than local (<10 km) flows.

Ganesan, AL, Rigby M, Zammit-Mangion A, Manning AJ, Prinn RG, Fraser PJ, Harth CM, Kim KR, Krummel PB, Li S, Mühle J, O'Doherty SJ, Park S, Salameh PK, Steele LP, Weiss RF.  2014.  Characterization of uncertainties in atmospheric trace gas inversions using hierarchical Bayesian methods. Atmos. Chem. Phys.. 14:3855-3864.: Copernicus Publications   10.5194/acp-14-3855-2014   AbstractWebsite
n/a
Gordon, AL, Weiss RF, Smethie WM, Warner MJ.  1992.  Thermocline and intermediate water communication between the south Atlantic and Indian oceans. Journal of Geophysical Research-Oceans. 97:7223-7240.   10.1029/92jc00485   AbstractWebsite

A conductivity-temperature-depth and tracer chemistry section in the southeast South Atlantic in December 1989 and January 1990 presents strong evidence that there is a significant interocean exchange of thermocline and intermediate water between the South Atlantic and Indian oceans. Eastward flowing water at 10-degrees-W composed of South Atlantic Central (thermocline) Water is too enriched with chlorofluoromethanes 11 and 12 and oxygen to be the sole source of similar theta-S water within the northward flowing Benguela Current. About two thirds of the Benguela Current thermocline transport is drawn from the Indian Ocean; the rest is South Atlantic water that has folded into the Benguela Current in association with the Agulhas eddy-shedding process. South Atlantic Central water passes in the Indian Ocean by a route to the south of the Agulhas Return Current. The South Atlantic water loops back to the Atlantic within the Indian Ocean, perhaps mostly within the Agulhas recirculation cell of the southwest Indian Ocean. Linkage of Atlantic and Indian Ocean water diminishes with increasing depth; it extends through the lower thermocline into the Antarctic Intermediate Water (AAIW) (about 50% is derived from the Indian Ocean) but not into the deep water. While much of the interocean exchange remains on an approximate horizontal "isopycnal" plane, as much as 10 x 10(6) m3 s-1 of Indian Ocean water within the 25 x 10(6) m3 s-1 Benguela Current, mostly derived from the lower thermocline and AAIW, may balance deeper Atlantic export of North Atlantic Deep Water (NADW). The addition of salt water from the evaporative Indian Ocean into the South Atlantic Ocean thermocline and AAIW levels may precondition the Atlantic for NADW formation. While AAIW seems to be the chief feed for NADW, the bulk of it enters the subtropical South Atlantic, spiked with Indian Ocean salt, within the Benguela Current rather than along the western boundary of the South Atlantic.

Greally, BR, Simmonds PG, O'Doherty S, McCulloch A, Miller BR, Salameh PK, Muhle J, Tanhua T, Harth C, Weiss RF, Fraser PJ, Krummel PB, Dunse BL, Porter LW, Prinn RG.  2005.  Improved continuous in situ measurements of C1–C3 PFCs, HFCs, HCFCs, CFCs and SF6 in Europe and Australia. Environmental Sciences. 2:253-261.   10.1080/15693430500402614   Abstract

Improved monitoring of non-CO2 greenhouse gases in air samples is presented, achieved using a new analytical system based on preconcentration, gas-chromatography and mass spectrometry. In addition to the major HFCs, HCFCs and CFCs, the new observations include the first in situ time series of the C1–C3 PFCs (CF4, C2F6 and C3F8) and the more volatile of the HFCs (CHF3, CH2F2, CH3CF3) alongside SF6, all of which are now monitored routinely as part of the Advanced Global Atmospheric Gases Experiment (AGAGE). Observed trends in newly monitored species are shown, obtained from 1–2 years continuous in situ air analyses at remote monitoring sites at Mace Head (Ireland) and Cape Grim (Australia). Observed deviations in the air background for these gas species are linked to modelled trajectories of air masses arriving at the monitoring stations to indicate potential source regions for emissions in Europe and Australia. In addition, preliminary estimates of 2004 mixing ratio growth rates of compounds are deduced from the observations, which highlight the importance of continuous atmospheric monitoring for verification of consumption-based emission estimates of non-CO2 greenhouse gases.

Greally, BR, Manning AJ, Reimann S, McCulloch A, Huang J, Dunse BL, Simmonds PG, Prinn RG, Fraser PJ, Cunnold DM, O'Doherty S, Porter LW, Stemmler K, Vollmer MK, Lunder CR, Schmidbauer N, Hermansen O, Arduini J, Salameh PK, Krummel PB, Wang RHJ, Folini D, Weiss RF, Maione M, Nickless G, Stordal F, Derwent RG.  2007.  Observations of 1,1-difluoroethane (HFC-152a) at AGAGE and SOGE monitoring stations in 1994-2004 and derived global and regional emission estimates. Journal of Geophysical Research-Atmospheres. 112   10.1029/2006jd007527   AbstractWebsite

[1] Ground-based in situ measurements of 1,1-difluoroethane (HFC-152a, CH3CHF2) which is regulated under the Kyoto Protocol are reported under the auspices of the AGAGE (Advanced Global Atmospheric Gases Experiment) and SOGE (System of Observation of halogenated Greenhouse gases in Europe) programs. Observations of HFC-152a at five locations (four European and one Australian) over a 10 year period were recorded. The annual average growth rate of HFC-152a in the midlatitude Northern Hemisphere has risen from 0.11 ppt/yr to 0.6 ppt/yr from 1994 to 2004. The Southern Hemisphere annual average growth rate has risen from 0.09 ppt/yr to 0.4 ppt/yr from 1998 to 2004. The 2004 average mixing ratio for HFC-152a was 5.0 ppt and 1.8 ppt in the Northern and Southern hemispheres, respectively. The annual cycle observed for this species in both hemispheres is approximately consistent with measured annual cycles at the same locations in other gases which are destroyed by OH. Yearly global emissions of HFC-152a from 1994 to 2004 are derived using the global mean HFC-152a observations and a 12-box 2-D model. The global emission of HFC-152a has risen from 7 Kt/yr to 28 Kt/yr from 1995 to 2004. On the basis of observations of above-baseline elevations in the HFC-152a record and a consumption model, regional emission estimates for Europe and Australia are calculated, indicating accelerating emissions from Europe since 2000. The overall European emission in 2004 ranges from 1.5 to 4.0 Kt/year, 5-15% of global emissions for 1,1-difluoroethane, while the Australian contribution is negligible at 5-10 tonnes/year, < 0.05% of global emissions.