Sulfuryl fluoride in the global atmosphere

Citation:
Muhle, J, Huang J, Weiss RF, Prinn RG, Miller BR, Salameh PK, Harth CM, Fraser PJ, Porter LW, Greally BR, O'Doherty S, Simmonds PG.  2009.  Sulfuryl fluoride in the global atmosphere. Journal of Geophysical Research-Atmospheres. 114

Date Published:

Mar

Keywords:

2 decades, air, carbonyl sulfide, chemistry, emissions, gas-exchange, lifetimes, ocean, sf6, so2f2

Abstract:

The first calibrated high-frequency, high-precision, in situ atmospheric and archived air measurements of the fumigant sulfuryl fluoride (SO(2)F(2)) have been made as part of the Advanced Global Atmospheric Gas Experiment (AGAGE) program. The global tropospheric background concentration of SO(2)F(2) has increased by 5 +/- 1% per year from similar to 0.3 ppt (parts per trillion, dry air mol fraction) in 1978 to similar to 1.35 ppt in May 2007 in the Southern Hemisphere, and from similar to 1.08 ppt in 1999 to similar to 1.53 ppt in May 2007 in the Northern Hemisphere. The SO(2)F(2) interhemispheric concentration ratio was 1.13 +/- 0.02 from 1999 to 2007. Two-dimensional 12-box model inversions yield global total and global oceanic uptake atmospheric lifetimes of 36 +/- 11 and 40 +/- 13 years, respectively, with hydrolysis in the ocean being the dominant sink, in good agreement with 35 +/- 14 years from a simple oceanic uptake calculation using transfer velocity and solubility. Modeled SO2F2 emissions rose from similar to 0.6 Gg/a in 1978 to similar to 1.9 Gg/a in 2007, but estimated industrial production exceeds these modeled emissions by an average of similar to 50%. This discrepancy cannot be explained with a hypothetical land sink in the model, suggesting that only similar to 2/3 of the manufactured SO(2)F(2) is actually emitted into the atmosphere and that similar to 1/3 may be destroyed during fumigation. With mean SO(2)F(2) tropospheric mixing ratios of similar to 1.4 ppt, its radiative forcing is small and it is probably an insignificant sulfur source to the stratosphere. However, with a high global warming potential similar to CFC-11, and likely increases in its future use, continued atmospheric monitoring of SO(2)F(2) is warranted.

Notes:

n/a

Website

DOI:

10.1029/2008jd011162

Scripps Publication ID:

D05306