Re-evaluation of the lifetimes of the major CFCs and CH<sub>3</sub>CCl<sub>3</sub> using atmospheric trends

Citation:
Rigby, M, Prinn RG, O'Doherty S, Montzka SA, McCulloch A, Harth CM, Muhle J, Salameh PK, Weiss RF, Young D, Simmonds PG, Hall BD, Dutton GS, Nance D, Mondeel DJ, Elkins JW, Krummel PB, Steele LP, Fraser PJ.  2013.  Re-evaluation of the lifetimes of the major CFCs and CH3CCl3 using atmospheric trends. Atmospheric Chemistry and Physics. 13:2691-2702.

Keywords:

2 decades, chloroform, gases, halocarbons, hydrocarbons, hydroxyl radicals, inn rg, 1983, journal of geophysical research-oceans and atmospheres, v88, p8353, methodology, Ozone, tropospheric oh, variability

Abstract:

Since the Montreal Protocol on Substances that Deplete the Ozone Layer and its amendments came into effect, growth rates of the major ozone depleting substances (ODS), particularly CFC-11, -12 and -113 and CH3CCl3, have declined markedly, paving the way for global stratospheric ozone recovery. Emissions have now fallen to relatively low levels, therefore the rate at which this recovery occurs will depend largely on the atmospheric lifetime of these compounds. The first ODS measurements began in the early 1970s along with the first lifetime estimates calculated by considering their atmospheric trends. We now have global mole fraction records spanning multiple decades, prompting this lifetime re-evaluation. Using surface measurements from the Advanced Global Atmospheric Gases Experiment (AGAGE) and the National Oceanic and Atmospheric Administration Global Monitoring Division (NOAA GMD) from 1978 to 2011, we estimated the lifetime of CFC-11, CFC-12, CFC-113 and CH3CCl3 usin!

Notes:

n/a

Website

DOI:

10.5194/acp-13-2691-2013