The major and minor element geochemistry of Lake Baikal

Falkner, KK, Measures CI, Herbelin SE, Edmond JM, Weiss RF.  1991.  The major and minor element geochemistry of Lake Baikal. Limnology and Oceanography. 36:413-423.

Date Published:



aluminum, atlantic, barite, chemistry, germanium, matter, metals, natural-waters, particles


A comprehensive, joint Soviet-American study of the chemistry of Lake Baikal, the world's deepest (1,632 m) lake, was carried out in July 1988. In this paper, we report the major, minor, and preliminary trace element concentrations for three profiles obtained at or near the deepest and central part of the three major basins of the lake. With the exception of Ba, the distributions of major and minor elements were homogeneous, displaying no variations greater than analytical uncertainties. Average concentrations in mu-mol kg-1 (1 SD) are titration alkalinity = 1,093(6), SO42- = 57.4(1.3), Cl = 12.3(0.7), Ca = 402(7), Mg = 126(1), Na = 155(4), and K = 24.1(1.0); and in nmol kg-1 are Sr = 1,350(30), Li = 296(12), Ba = 74.7(2.6), Rb = 7.10(0.23), and U = 1.77(0.12). Excluding K and Cl, these values compare favorably with previously published results. Although some hydrothermal activity is known to occur within the lake, it does not appear to significantly affect major ion cycling. The residence times of the major ions are 330 yr or the same as that of water in the basin and so are controlled predominantly by their riverine fluxes. There is not yet enough information to assess whether hydrothermal processes affect minor element cycles. Ba concentrations decrease with depth, showing abrupt decreases near the bottom at two stations. It appears to undergo some form of uptake at the sediments, but further study is required to discern the processes governing Ba distribution.