Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
Young, AP, Guza RT, O'Reilly WC, Burvingt O, Flick RE.  2016.  Observations of coastal cliff base waves, sand levels, and cliff top shaking. Earth Surface Processes and Landforms. 41:1564-1573.   10.1002/esp.3928   AbstractWebsite

Concurrent observations of waves at the base of a southern California coastal cliff and seismic cliff motion were used to explore wave-cliff interaction and test proxies for wave forcing on coastal cliffs. Time series of waves and sand levels at the cliff base were extracted from pressure sensor observations programmatically and used to compute various wave impact metrics (e.g. significant cliff base wave height). Wave-cliff interaction was controlled by tide, incident waves, and beach sand levels, and varied from low tides with no wave-cliff impacts, to high tides with continuous wave-cliff interaction. Observed cliff base wave heights differed from standard Normal and Rayleigh distributions. Cliff base wave spectra levels were elevated at sea swell and infragravity frequencies. Coastal cliff top response to wave impacts was characterized using microseismic shaking in a frequency band (20-45Hz) sensitive to wave breaking and cliff impacts. Response in the 20-45Hz band was well correlated with wave-cliff impact metrics including cliff base significant wave height and hourly maximum water depth at the cliff base (r(2) = 0.75). With site-specific calibration relating wave impacts and shaking, and acceptable anthropogenic (traffic) noise levels, cliff top seismic observations are a viable proxy for cliff base wave conditions. The methods presented here are applicable to other coastal settings and can provide coastal managers with real time coastal conditions. Copyright (C) 2016 John Wiley & Sons, Ltd.

Young, AP, Flick RE, O'Reilly WC, Chadwick DB, Crampton WC, Helly JJ.  2014.  Estimating cliff retreat in southern California considering sea level rise using a sand balance approach. Marine Geology. 348:15-26.   10.1016/j.margeo.2013.11.007   AbstractWebsite

A sand balance coastal profile model for estimating cliff and shoreline retreats considering sea level rise is discussed. The model, specifically designed for cliffed coasts fronted by sandy beaches, conditionally permits beach and cliff retreat to occur independently, and includes subaerial cliff erosion and external beach sand sources. The model accommodates complex nearshore and inland topography, high volume beaches, and variable cliff composition, and is suitable where local sand balance is thought to be a primary controller of coastal evolution over decade–century time scales. Designating an upper active beach boundary and beach–cliff intersection divides the coastal profile into active beach and cliff sections separated by a back beach buffer. The buffer acts as a sand reservoir and delays marine driven cliff erosion, resulting in lower estimated cliff retreat compared to previous models neglecting protective beaches. The model was applied on 21 km of cliffs in Marine Corps Base Camp Pendleton, California considering sea level rise ranging from 0.5 to 2 m over 100 yrs using 207 profiles, sand budget deficits estimated from historical data, and sand inputs from terrestrial erosion estimated from a time series of lidar data. Modeled mean and maximum scenario cliff retreats ranged from 4–87 m and 21–179 m, respectively, and provide order of magnitude estimates, but are reliant on model assumptions and do not include potential coastal changes unrelated to local sand balance. The results underscore the influence of protective beaches on cliff retreat.

Young, AP, Raymond JH, Sorenson J, Johnstone EA, Driscoll NW, Flick RE, Guza RT.  2010.  Coarse Sediment Yields from Seacliff Erosion in the Oceanside Littoral Cell. Journal of Coastal Research. 26:580-585.   10.2112/08-1179.1   AbstractWebsite

The coarse sediment fraction of geologic formations exposed in 42 km of southern California seacliffs in the Oceanside Littoral Cell was estimated using more than 400 samples An impulse laser, oblique photographs, and coastal maps were used to define thickness and alongshore extent of the geologic units exposed in the seacliffs The coarse sediment (defined as diameter > 0 06 mm) fraction in each geologic unit was estimated by sieving About 80% of the exposed cliff face is coarse and can contribute to beach building Finer cliff sediments are transported offshore by waves and currents Although there are some differences, the observed 80% coarse fraction is generally consistent with previous estimates based on an order of magnitude fewer samples Coastal development has largely eliminated about 40% of seacliffs in the Oceanside Littoral Cell as potential beach sand sources For the remaining seacliffs, 1 cm of average cliff retreat yields 10,000 m(3) of potential beach-building material

Young, AP, Guza RT, Flick RE, O'Reilly WC, Gutierrez R.  2009.  Rain, waves, and short-term evolution of composite seacliffs in southern California. Marine Geology. 267:1-7.   10.1016/j.margeo.2009.08.008   AbstractWebsite

A four-year time series of nine airborne LiDAR surveys were used to assess the roles of wave attack and rainfall on the erosion of 42 km of southern California seacliffs. Nine continuous seacliff sections, separated by coastal lagoon mouths, all show maximum seacliff erosion in the rainiest time period (when wave energy was not particularly elevated), and in most sections the squared correlations between rainfall and erosion time series exceeded 0.8. Although rain and associated subaerial mechanisms such as groundwater seepage triggered most of the observed seacliff failures, wave attack accelerated seacliff erosion, with erosion rates of cliffs exposed to wave attack five times higher than at adjacent cliffs not exposed to waves. The results demonstrate the importance of both waves and rain in the erosion of southern California seacliffs and suggest that the combined influences of marine and subaerial processes accelerate the erosion rate through positive feedbacks. (C) 2009 Elsevier B.V. All rights reserved.

Bromirski, PD, Cayan DR, Flick RE.  2005.  Wave spectral energy variability in the northeast Pacific. Journal of Geophysical Research-Oceans. 110   10.1029/2004jc002398   AbstractWebsite

The dominant characteristics of wave energy variability in the eastern North Pacific are described from NOAA National Data Buoy Center ( NDBC) buoy data collected from 1981 to 2003. Ten buoys at distributed locations were selected for comparison based on record duration and data continuity. Long- period ( LP) [ T > 12] s, intermediate- period [ 6 <= T <= 12] s, and short- period [ T < 6] s wave spectral energy components are considered separately. Empirical orthogonal function ( EOF) analyses of monthly wave energy anomalies reveal that all three wave energy components exhibit similar patterns of spatial variability. The dominant mode represents coherent heightened ( or diminished) wave energy along the West Coast from Alaska to southern California, as indicated by composites of the 700 hPa height field. The second EOF mode reveals a distinct El Nino-Southern Oscillation (ENSO)-associated spatial distribution of wave energy, which occurs when the North Pacific storm track is extended unusually far south or has receded to the north. Monthly means and principal components (PCs) of wave energy levels indicate that the 1997 - 1998 El Nino- winter had the highest basin- wide wave energy within this record, substantially higher than the 1982 - 1983 El Nino. An increasing trend in the dominant PC of LP wave energy suggests that storminess has increased in the northeast Pacific since 1980. This trend is emphasized at central eastern North Pacific locations. Patterns of storminess variability are consistent with increasing activity in the central North Pacific as well as the tendency for more extreme waves in the south during El Nino episodes and in the north during La Nina.