Publications

Export 277 results:
Sort by: Author Title [ Year  (Desc)]
2018
Bresnahan, PJ, Martz TR.  2018.  Gas diffusion cell geometry for a microfluidic dissolved inorganic carbon analyzer. Ieee Sensors Journal. 18:2211-2217.   10.1109/jsen.2018.2794882   AbstractWebsite

Variable gas diffusion cell geometries were tested for the extraction of dissolved inorganic carbon (DIC) from a microfluidic (tens to hundreds of microliters) seawater sample. With a focus on optimization of diffusion cell geometry, we compare five unique diffusion cell designs. Using 3-D printing technology to streamline the prototyping and testing process, we were able to conceive, design, fabricate, and thoroughly evaluate each design over the course of about one month. In total, 1043 DIC measurements were carried out in 109 experiments for the five working manifolds. We find that a small diameter, cylindrical diffusion cell design offers several advantages over its planar counterparts and a larger diameter cylindrical cell, most notably the ability to increase the ratio of the exchange membrane's contact surface area to solution volume (the "aspect ratio") without sacrificing channel integrity. Multiple designs approached short-term repeatability of <1%, but only the cylindrical diffusion cell design allowed for <0.2% repeatability using less than 200 mu L of sample.

Thorpe, SA, Malarkey J, Voet G, Alford MH, Girton JB, Carter GS.  2018.  Application of a model of internal hydraulic jumps. Journal of Fluid Mechanics. 834:125-148.   10.1017/jfm.2017.646   AbstractWebsite

A model devised by Thorpe & Li (J. Fluid Mech., vol. 758, 2014, pp. 94-120) that predicts the conditions in which stationary turbulent hydraulic jumps can occur in the flow of a continuously stratified layer over a horizontal rigid bottom is applied to, and its results compared with, observations made at several locations in the ocean. The model identifies two positions in the Samoan Passage at which hydraulic jumps should occur and where changes in the structure of the flow are indeed observed. The model predicts the amplitude of changes and the observed mode 2 form of the transitions. The predicted dissipation of turbulent kinetic energy is also consistent with observations. One location provides a particularly well-defined example of a persistent hydraulic jump. It takes the form of a 390 m thick and 3.7 km long mixing layer with frequent density inversions separated from the seabed by some 200 m of relatively rapidly moving dense water, thus revealing the previously unknown structure of an internal hydraulic jump in the deep ocean. Predictions in the Red Sea Outflow in the Gulf of Aden are relatively uncertain. Available data, and the model predictions, do not provide strong support for the existence of hydraulic jumps. In the Mediterranean Outflow, however, both model and data indicate the presence of a hydraulic jump.

2017
Sun, XL, Abshire JB, Borsa AA, Fricker HA, Yi DH, DiMarzio JP, Paolo FS, Brunt KM, Harding DJ, Neumann GA.  2017.  ICESAT/GLAS Altimetry Measurements: Received Signal Dynamic Range and Saturation Correction. Ieee Transactions on Geoscience and Remote Sensing. 55:5440-5454.   10.1109/tgrs.2017.2702126   AbstractWebsite

NASA's Ice, Cloud, and land Elevation Satellite (ICESat), which operated between 2003 and 2009, made the first satellite-based global lidar measurement of earth's ice sheet elevations, sea-ice thickness, and vegetation canopy structure. The primary instrument on ICESat was the Geoscience Laser Altimeter System (GLAS), which measured the distance from the spacecraft to the earth's surface via the roundtrip travel time of individual laser pulses. GLAS utilized pulsed lasers and a direct detection receiver consisting of a silicon avalanche photodiode and a waveform digitizer. Early in the mission, the peak power of the received signal from snow and ice surfaces was found to span a wider dynamic range than anticipated, often exceeding the linear dynamic range of the GLAS 1064-nm detector assembly. The resulting saturation of the receiver distorted the recorded signal and resulted in range biases as large as similar to 50 cm for ice-and snow-covered surfaces. We developed a correction for this "saturation range bias" based on laboratory tests using a spare flight detector, and refined the correction by comparing GLAS elevation estimates with those derived from Global Positioning System surveys over the calibration site at the salar de Uyuni, Bolivia. Applying the saturation correction largely eliminated the range bias due to receiver saturation for affected ICESat measurements over Uyuni and significantly reduced the discrepancies at orbit crossovers located on flat regions of the Antarctic ice sheet.

Sun, XL, Abshire JB, Borsa AA, Fricker HA, Yi DH, DiMarzio JP, Paolo FS, Brunt KM, Harding DJ, Neumann GA.  2017.  ICESAT/GLAS Altimetry Measurements: Received Signal Dynamic Range and Saturation Correction. Ieee Transactions on Geoscience and Remote Sensing. 55:5440-5454.   10.1109/tgrs.2017.2702126   AbstractWebsite

NASA's Ice, Cloud, and land Elevation Satellite (ICESat), which operated between 2003 and 2009, made the first satellite-based global lidar measurement of earth's ice sheet elevations, sea-ice thickness, and vegetation canopy structure. The primary instrument on ICESat was the Geoscience Laser Altimeter System (GLAS), which measured the distance from the spacecraft to the earth's surface via the roundtrip travel time of individual laser pulses. GLAS utilized pulsed lasers and a direct detection receiver consisting of a silicon avalanche photodiode and a waveform digitizer. Early in the mission, the peak power of the received signal from snow and ice surfaces was found to span a wider dynamic range than anticipated, often exceeding the linear dynamic range of the GLAS 1064-nm detector assembly. The resulting saturation of the receiver distorted the recorded signal and resulted in range biases as large as similar to 50 cm for ice-and snow-covered surfaces. We developed a correction for this "saturation range bias" based on laboratory tests using a spare flight detector, and refined the correction by comparing GLAS elevation estimates with those derived from Global Positioning System surveys over the calibration site at the salar de Uyuni, Bolivia. Applying the saturation correction largely eliminated the range bias due to receiver saturation for affected ICESat measurements over Uyuni and significantly reduced the discrepancies at orbit crossovers located on flat regions of the Antarctic ice sheet.

Alford, MH, MacKinnon JA, Pinkel R, Klymak JM.  2017.  Space-time scales of shear in the North Pacific. Journal of Physical Oceanography. 47:2455-2478.   10.1175/jpo-d-17-0087.1   AbstractWebsite

The spatial, temporal, and directional characteristics of shear are examined in the upper 1400m of the North Pacific during late spring with an array of five profiling moorings deployed from 25 degrees to 37 degrees N (1330 km) and simultaneous shipboard transects past them. The array extended from a regime of moderate wind generation at the north to south of the critical latitude 28.8 degrees N, where parametric subharmonic instability (PSI) can transfer energy from semidiurnal tides to near-inertial motions. Analyses are done in an isopycnal-following frame to minimize contamination by Doppler shifting. Approximately 60% of RMS shear at vertical scales >20m (and 80% for vertical scales >80 m) is contained in near-inertial motions. An inertial back-rotation technique is used to index shipboard observations to a common time and to compute integral time scales of the shear layers. Persistence times are O(7) days at most moorings but O(25) days at the critical latitude. Simultaneous shipboard transects show that these shear layers can have lateral scales >= 100 km. Layers tend to slope downward toward the equator north of the critical latitude and are more flat to its south. Phase between shear and strain is used to infer lateral propagation direction. Upgoing waves are everywhere laterally isotropic. Downgoing waves propagate predominantly equatorward north and south of the critical latitude but are isotropic near it. Broadly, results are consistent with wind generation north of the critical latitude and PSI near it-and suggest a more persistent and laterally coherent near-inertial wave field than previously thought.

Alford, MH, MacKinnon JA, Pinkel R, Klymak JM.  2017.  Space-time scales of shear in the North Pacific. Journal of Physical Oceanography. 47:2455-2478.   10.1175/jpo-d-17-0087.1   AbstractWebsite

The spatial, temporal, and directional characteristics of shear are examined in the upper 1400m of the North Pacific during late spring with an array of five profiling moorings deployed from 25 degrees to 37 degrees N (1330 km) and simultaneous shipboard transects past them. The array extended from a regime of moderate wind generation at the north to south of the critical latitude 28.8 degrees N, where parametric subharmonic instability (PSI) can transfer energy from semidiurnal tides to near-inertial motions. Analyses are done in an isopycnal-following frame to minimize contamination by Doppler shifting. Approximately 60% of RMS shear at vertical scales >20m (and 80% for vertical scales >80 m) is contained in near-inertial motions. An inertial back-rotation technique is used to index shipboard observations to a common time and to compute integral time scales of the shear layers. Persistence times are O(7) days at most moorings but O(25) days at the critical latitude. Simultaneous shipboard transects show that these shear layers can have lateral scales >= 100 km. Layers tend to slope downward toward the equator north of the critical latitude and are more flat to its south. Phase between shear and strain is used to infer lateral propagation direction. Upgoing waves are everywhere laterally isotropic. Downgoing waves propagate predominantly equatorward north and south of the critical latitude but are isotropic near it. Broadly, results are consistent with wind generation north of the critical latitude and PSI near it-and suggest a more persistent and laterally coherent near-inertial wave field than previously thought.

Alford, MH, MacKinnon JA, Pinkel R, Klymak JM.  2017.  Space-time scales of shear in the North Pacific. Journal of Physical Oceanography. 47:2455-2478.   10.1175/jpo-d-17-0087.1   AbstractWebsite

The spatial, temporal, and directional characteristics of shear are examined in the upper 1400m of the North Pacific during late spring with an array of five profiling moorings deployed from 25 degrees to 37 degrees N (1330 km) and simultaneous shipboard transects past them. The array extended from a regime of moderate wind generation at the north to south of the critical latitude 28.8 degrees N, where parametric subharmonic instability (PSI) can transfer energy from semidiurnal tides to near-inertial motions. Analyses are done in an isopycnal-following frame to minimize contamination by Doppler shifting. Approximately 60% of RMS shear at vertical scales >20m (and 80% for vertical scales >80 m) is contained in near-inertial motions. An inertial back-rotation technique is used to index shipboard observations to a common time and to compute integral time scales of the shear layers. Persistence times are O(7) days at most moorings but O(25) days at the critical latitude. Simultaneous shipboard transects show that these shear layers can have lateral scales >= 100 km. Layers tend to slope downward toward the equator north of the critical latitude and are more flat to its south. Phase between shear and strain is used to infer lateral propagation direction. Upgoing waves are everywhere laterally isotropic. Downgoing waves propagate predominantly equatorward north and south of the critical latitude but are isotropic near it. Broadly, results are consistent with wind generation north of the critical latitude and PSI near it-and suggest a more persistent and laterally coherent near-inertial wave field than previously thought.

Yang, JC, Lin XP, Xie SP.  2017.  A Transbasin Mode of Interannual Variability of the Central American Gap Winds: Seasonality and Large-Scale Forcing. Journal of Climate. 30:8223-8235.   10.1175/jcli-d-17-0021.1   AbstractWebsite

A transbasin mode (TBM) is identified as the leading mode of interannual surface wind variability over the Intra-Americas Seas across Central America based on empirical orthogonal function analysis. The TBM is associated with variability in Central American gap winds, most closely with the Papagayo jet but with considerable signals over the Gulfs of Tehuantepec and Panama. Although El Nino-Southern Oscillation (ENSO) is the main large-scale forcing, the TBM features a distinct seasonality due to sea level pressure (SLP) adjustments across the Pacific and Atlantic. During July-September, ENSO causes meridional SLP gradient anomalies across Central America, intensifying anomalous geostrophic winds funneling through Papagayo to form the TBM. During wintertime, ENSO peaks but imparts little anomalous SLP gradient across Central America with a weak projection on the TBM because of the competing effects of the Pacific-North American teleconnection and tropospheric Kelvin waves. Besides ENSO, tropical Atlantic sea surface temperature anomalies make a weak contribution to the TBM in boreal summer by strengthening the cross-basin gradient. ENSO and the Atlantic forcing constitute a cross-basin seesaw pattern in SLP, manifested as an anomalous Walker circulation across the tropical Americas. The TBM appears to be part of the low-level branch of the anomalous Walker circulation, which modulates Central American wind jets by orographic effect. This study highlights the seasonality of gap wind variability, and calls for further research into its influence on regional climate.

Zheng, ZW, Zheng QA, Gopalakrishnan G, Kuo YC, Yeh TK.  2017.  Response of upper ocean cooling off northeastern Taiwan to typhoon passages. Ocean Modelling. 115:105-118.   10.1016/j.ocemod.2017.05.008   AbstractWebsite

A comprehensive investigation of the typhoon induced upper ocean processes and responses off northeastern Taiwan was conducted. Using the Regional Ocean Modeling System, the upper ocean responses of all typhoons striking Taiwan between 2005 and 2013 were simulated. In addition to Kuroshio intrusion, the present study demonstrates another important mechanism of typhoon induced near-inertial currents over the continental shelf of East China Sea, which can also trigger a distinct cooling (through entrainment mixing) within this region. Results indicate that the processes of typhoon inducing distinct cooling off northeastern Taiwan are conditional phenomena (only similar to 12% of typhoons passing Taiwan triggered extreme cooling there). Subsequently, by executing a series of sensitivity experiments and systematic analyses on the behaviors and background conditions of all those typhoon cases, key criteria determining the occurrences of cooling through both mechanisms were elucidated. Occurrences of cooling through the Kuroshio intrusion mechanism are determined mainly by the strength of the local wind over northeastern Taiwan. A distinct cooling triggered by enhanced near-inertial currents is shown to be associated with the process of wind-current resonance. Both processes of Kuroshio intrusion and enhanced near-inertial currents are dominated by wind forcing rather than upper oceanic conditions. Based on the recent findings on the possible dynamic linkage between sea surface temperature near northeast Taiwan and local weather systems, the results elucidated in this study lay the foundation for further improvement in the regional weather prediction surrounding northeast Taiwan. (C) 2017 Elsevier Ltd. All rights reserved.

Chen, R, Gille ST, McClean JL.  2017.  Isopycnal eddy mixing across the Kuroshio Extension: Stable versus unstable states in an eddying model. Journal of Geophysical Research-Oceans. 122:4329-4345.   10.1002/2016jc012164   AbstractWebsite

The Kuroshio Extension (KE) jet transitions between stable and unstable states on interannual time scales. Cross-jet eddy mixing in the two states is contrasted in the KE region ( 28 degrees-40 degrees N,125 degrees-165 degrees E), using a global eddying 0.1 degrees configuration of the Parallel Ocean Program with online numerical particles. The 4 year period chosen (June 1994 to May 1998) covers a full cycle of the stable state, unstable state and the transition period. Large values of cross-jet eddy diffusivities within the KE jet are concentrated in the upper 1000 m. In the upper ocean, elevated cross-jet mixing within the KE jet is mainly concentrated in the downstream part of the KE jet, where the jet is weak but eddy activity is strong. The simulated time-mean KE jet is more intense and extends further east in the stable state than in the unstable state. Consequently, strong cross-jet mixing within the KE jet is located west of 150 degrees E during June 1996 to May 1997 (a typical unstable state), but east of 150 degrees E during June 1995 to May 1996 (a typical stable state). However, average mixing within the KE jet is indistinguishable in the typical stable and unstable states. In the deep ocean, mixing is strongly influenced by topography, and thus their horizontal structures have less inter-annual variability than in the upper ocean. One caveat is that results here cover one representative cycle of the two states. To obtain the climate mean mixing structures for the stable or unstable state, one would need numerical output covering a period much longer than 4 years.

Sumargo, E, Cayan DR.  2017.  Variability of cloudiness over mountain terrain in the western United States. Journal of Hydrometeorology. 18:1227-1245.   10.1175/jhm-d-16-0194.1   AbstractWebsite

This study investigates the spatial and temporal variability of cloudiness across mountain zones in the western United States. Daily average cloud albedo is derived from a 19-yr series (1996-2014) of half-hourly Geostationary Operational Environmental Satellite (GOES) images. During springtime when incident radiation is active in driving snowmelt-runoff processes, the magnitude of daily cloud variations can exceed 50% of long-term averages. Even when aggregated over 3-month periods, cloud albedo varies by +/- 10% of long-term averages in many locations. Rotated empirical orthogonal functions (REOFs) of daily cloud albedo anomalies over high-elevation regions of the western conterminous United States identify distinct regional patterns, wherein the first five REOFs account for; similar to 67% of the total variance. REOF1 is centered over Northern California and Oregon and is pronounced between November and March. REOF2 is centered over the interior northwest and is accentuated between March and July. Each of the REOF/rotated principal components (RPC) modes associates with anomalous large-scale atmospheric circulation patterns and one or more large-scale teleconnection indices (Arctic Oscillation, Nino-3.4, and Pacific-North American), which helps to explain why anomalous cloudiness patterns take on regional spatial scales and contain substantial variability over seasonal time scales.

Farrokhrooz, M, Wage KE, Dzieciuch MA, Worcester PF.  2017.  Vertical line array measurements of ambient noise in the North Pacific. Journal of the Acoustical Society of America. 141:1571-1581.   10.1121/1.4976706   AbstractWebsite

Shipping noise and wind are the dominant sources of ocean noise in the frequency band between 20 and 500 Hz. This paper analyzes noise in that band using data from the SPICEX experiment, which took place in the North Pacific in 2004-2005, and compares the results with other North Pacific experiments. SPICEX included vertical arrays with sensors above and below the surface conjugate depth, facilitating an analysis of the depth dependence of ambient noise. The paper includes several key results. First, the 2004-05 noise levels at 50 Hz measured in SPICEX had not increased relative to levels measured by Morris [(1978). J. Acoust. Soc. Am. 64, 581-590] at a nearby North Pacific site three decades earlier, but rather were comparable to those levels. Second, at 50Hz the noise below the conjugate depth decreases at a rate of -9.9 dB/km, which is similar to the rate measured by Morris and much less than the rate measured by Gaul, Knobles, Shooter, and Wittenborn [(2007). IEEE J. Ocean. Eng. 32, 497-512] for the CHURCH OPAL experiment. Finally, the paper describes the seasonal trends in noise over the year-long time series of the measurements. (C) 2017 Acoustical Society of America.

Farrokhrooz, M, Wage KE, Dzieciuch MA, Worcester PF.  2017.  Vertical line array measurements of ambient noise in the North Pacific. Journal of the Acoustical Society of America. 141:1571-1581.   10.1121/1.4976706   AbstractWebsite

Shipping noise and wind are the dominant sources of ocean noise in the frequency band between 20 and 500 Hz. This paper analyzes noise in that band using data from the SPICEX experiment, which took place in the North Pacific in 2004-2005, and compares the results with other North Pacific experiments. SPICEX included vertical arrays with sensors above and below the surface conjugate depth, facilitating an analysis of the depth dependence of ambient noise. The paper includes several key results. First, the 2004-05 noise levels at 50 Hz measured in SPICEX had not increased relative to levels measured by Morris [(1978). J. Acoust. Soc. Am. 64, 581-590] at a nearby North Pacific site three decades earlier, but rather were comparable to those levels. Second, at 50Hz the noise below the conjugate depth decreases at a rate of -9.9 dB/km, which is similar to the rate measured by Morris and much less than the rate measured by Gaul, Knobles, Shooter, and Wittenborn [(2007). IEEE J. Ocean. Eng. 32, 497-512] for the CHURCH OPAL experiment. Finally, the paper describes the seasonal trends in noise over the year-long time series of the measurements. (C) 2017 Acoustical Society of America.

Stuart, RK, Bundy R, Buck K, Ghassemain M, Barbeau K, Palenik B.  2017.  Copper toxicity response influences mesotrophic Synechococcus community structure. Environmental Microbiology. 19:756-769.   10.1111/1462-2920.13630   AbstractWebsite

Picocyanobacteria from the genus Synechococcus are ubiquitous in ocean waters. Their phylogenetic and genomic diversity suggests ecological niche differentiation, but the selective forces influencing this are not well defined. Marine picocyanobacteria are sensitive to Cu toxicity, so adaptations to this stress could represent a selective force within, and between, species', also known as clades. Here, we compared Cu stress responses in cultures and natural populations of marine Synechococcus from two co-occurring major mesotrophic clades (I and IV). Using custom microarrays and proteomics to characterize expression responses to Cu in the lab and field, we found evidence for a general stress regulon in marine Synechococcus. However, the two clades also exhibited distinct responses to copper. The Clade I representative induced expression of genomic island genes in cultures and Southern California Bight populations, while the Clade IV representative downregulated Fe-limitation proteins. Copper incubation experiments suggest that Clade IV populations may harbour stress-tolerant subgroups, and thus fitness tradeoffs may govern Cu-tolerant strain distributions. This work demonstrates that Synechococcus has distinct adaptive strategies to deal with Cu toxicity at both the clade and subclade level, implying that metal toxicity and stress response adaptations represent an important selective force for influencing diversity within marine Synechococcus populations.

Stuart, RK, Bundy R, Buck K, Ghassemain M, Barbeau K, Palenik B.  2017.  Copper toxicity response influences mesotrophic Synechococcus community structure. Environmental Microbiology. 19:756-769.   10.1111/1462-2920.13630   AbstractWebsite

Picocyanobacteria from the genus Synechococcus are ubiquitous in ocean waters. Their phylogenetic and genomic diversity suggests ecological niche differentiation, but the selective forces influencing this are not well defined. Marine picocyanobacteria are sensitive to Cu toxicity, so adaptations to this stress could represent a selective force within, and between, species', also known as clades. Here, we compared Cu stress responses in cultures and natural populations of marine Synechococcus from two co-occurring major mesotrophic clades (I and IV). Using custom microarrays and proteomics to characterize expression responses to Cu in the lab and field, we found evidence for a general stress regulon in marine Synechococcus. However, the two clades also exhibited distinct responses to copper. The Clade I representative induced expression of genomic island genes in cultures and Southern California Bight populations, while the Clade IV representative downregulated Fe-limitation proteins. Copper incubation experiments suggest that Clade IV populations may harbour stress-tolerant subgroups, and thus fitness tradeoffs may govern Cu-tolerant strain distributions. This work demonstrates that Synechococcus has distinct adaptive strategies to deal with Cu toxicity at both the clade and subclade level, implying that metal toxicity and stress response adaptations represent an important selective force for influencing diversity within marine Synechococcus populations.

Zhang, SJ, Sandwell DT, Jin TY, Li DW.  2017.  Inversion of marine gravity anomalies over southeastern China seas from multi-satellite altimeter vertical deflections. Journal of Applied Geophysics. 137:128-137.   10.1016/j.jappgeo.2016.12.014   AbstractWebsite

The accuracy and resolution of marine gravity field derived from satellite altimetry mainly depends on the range precision and dense spatial distribution. This paper aims at modeling a regional marine gravity field with improved accuracy and higher resolution (1' x V') over Southeastern China Seas using additional data from CryoSat-2 as well as new data from AltiKa. Three approaches are used to enhance the precision level of satellite-derived gravity anomalies. Firstly we evaluate a suite of published retracking algorithms and find the two-step retracker is optimal for open ocean waveforms. Secondly, we evaluate the filtering and resampling procedure used to reduce the full 20 or 40 Hz data to a lower rate having lower noise. We adopt a uniform low-pass filter for all altimeter missions and resample at 5 Hz and then perform a second editing based on sea surface slope estimates from previous models. Thirdly, we selected WHU12 model to update the corrections provided in geophysical data record. We finally calculated the 1' x 1' marine gravity field model by using EGM2008 model as reference field during the remove/restore procedure. The root mean squares of the discrepancies between the new result and DTU10, DTU13, V23.1, EGM2008 are within the range of 1.8-3.9 mGal, while the verification with respect to shipboard gravity data shows that the accuracy of the new result reached a comparable level with DTU13 and was slightly superior to V23.1, DTU10 and EGM2008 models. Moreover, the new result has a 2 mGal better accuracy over open seas than coastal areas with shallow water depth. (C) 2016 Elsevier B.V. All rights reserved.

2016
Barton, AD, Irwin AJ, Finkel ZV, Stock CA.  2016.  Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proceedings of the National Academy of Sciences of the United States of America. 113:2964-2969.   10.1073/pnas.1519080113   AbstractWebsite

Anthropogenic climate change has shifted the biogeography and phenology of many terrestrial and marine species. Marine phytoplankton communities appear sensitive to climate change, yet understanding of how individual species may respond to anthropogenic climate change remains limited. Here, using historical environmental and phytoplankton observations, we characterize the realized ecological niches for 87 North Atlantic diatom and dinoflagellate taxa and project changes in species biogeography between mean historical (1951-2000) and future (2051-2100) ocean conditions. We find that the central positions of the core range of 74% of taxa shift poleward at a median rate of 12.9 kmper decade (km.dec(-1)), and 90% of taxa shift eastward at a median rate of 42.7 km.dec(-1). The poleward shift is faster than previously reported for marine taxa, and the predominance of longitudinal shifts is driven by dynamic changes in multiple environmental drivers, rather than a strictly poleward, temperature-driven redistribution of ocean habitats. A century of climate change significantly shuffles community composition by a basin-wide median value of 16%, compared with seasonal variations of 46%. The North Atlantic phytoplankton community appears poised for marked shift and shuffle, which may have broad effects on food webs and biogeochemical cycles.

Jayarathne, T, Sultana CM, Lee C, Malfatti F, Cox JL, Pendergraft MA, Moore KA, Azam F, Tivanski AV, Cappa CD, Bertram TH, Grassian VH, Prather KA, Stone EA.  2016.  Enrichment of saccharides and divalent cations in sea spray aerosol during two phytoplankton blooms. Environmental Science & Technology. 50:11511-11520.   10.1021/acs.est.6b02988   AbstractWebsite

Sea spray aerosol (SSA) is a globally important source of particulate matter. A mesocosm study was performed to determine the relative enrichment of saccharides and inorganic ions in nascent fine (PM2.5) and coarse (PM102.5) SSA and the sea surface microlayer (SSML) relative to bulk seawater. Saccharides comprise a significant fraction of organic matter in fine and coarse SSA (11 and 27%, respectively). Relative to sodium, individual saccharides were enriched 141314-fold in fine SSA, 3138-fold in coarse SSA, but only up to 1.016.2-fold in SSML. Enrichments in SSML were attributed to rising bubbles that scavenge surface-active species from seawater, while further enrichment in fine SSA likely derives from bubble films. Mean enrichment factors for major ions demonstrated significant enrichment in fine SSA for potassium (1.3), magnesium (1.4), and calcium (1.7), likely because of their interactions with organic matter. Consequently, fine SSA develops a salt profile significantly different from that of seawater. Maximal enrichments of saccharides and ions coincided with the second of two phytoplankton blooms, signifying the influence of ocean biology on selective mass transfer across the oceanair interface.

Jayarathne, T, Sultana CM, Lee C, Malfatti F, Cox JL, Pendergraft MA, Moore KA, Azam F, Tivanski AV, Cappa CD, Bertram TH, Grassian VH, Prather KA, Stone EA.  2016.  Enrichment of saccharides and divalent cations in sea spray aerosol during two phytoplankton blooms. Environmental Science & Technology. 50:11511-11520.   10.1021/acs.est.6b02988   AbstractWebsite

Sea spray aerosol (SSA) is a globally important source of particulate matter. A mesocosm study was performed to determine the relative enrichment of saccharides and inorganic ions in nascent fine (PM2.5) and coarse (PM102.5) SSA and the sea surface microlayer (SSML) relative to bulk seawater. Saccharides comprise a significant fraction of organic matter in fine and coarse SSA (11 and 27%, respectively). Relative to sodium, individual saccharides were enriched 141314-fold in fine SSA, 3138-fold in coarse SSA, but only up to 1.016.2-fold in SSML. Enrichments in SSML were attributed to rising bubbles that scavenge surface-active species from seawater, while further enrichment in fine SSA likely derives from bubble films. Mean enrichment factors for major ions demonstrated significant enrichment in fine SSA for potassium (1.3), magnesium (1.4), and calcium (1.7), likely because of their interactions with organic matter. Consequently, fine SSA develops a salt profile significantly different from that of seawater. Maximal enrichments of saccharides and ions coincided with the second of two phytoplankton blooms, signifying the influence of ocean biology on selective mass transfer across the oceanair interface.

Brandon, J, Goldstein M, Ohman MD.  2016.  Long-term aging and degradation of microplastic particles: Comparing in situ oceanic and experimental weathering patterns. Marine Pollution Bulletin. 110:299-308.   10.1016/j.marpolbul.2016.06.048   AbstractWebsite

Polypropylene, low-density polyethylene, and high-density polyethylene pre-production plastic pellets were weathered for three years in three experimental treatments: dry/sunlight, seawater/sunlight, and seawater/darkness. Changes in chemical bond structures (hydroxyl, carbonyl groups and carbon-oxygen) with weathering were measured via Fourier Transform Infrared (FTIR) spectroscopy. These indices from experimentally weathered particles were compared to microplastic particles collected from oceanic surface waters in the California Current, the North Pacific Subtropical Gyre, and the transition region between the two, in order to estimate the exposure time of the oceanic plastics. Although chemical bonds exhibited some nonlinear changes with environmental exposure, they can potentially approximate the weathering time of some plastics, especially high-density polyethylene. The majority of the North Pacific Subtropical Gyre polyethylene particles we measured have inferred exposure times > 18 months, with some >30 months. Inferred particle weathering times are consistent with ocean circulation models suggesting a long residence time in the open ocean. (C) 2016 Elsevier Ltd. All rights reserved.

Stokes, MD, Deane G, Collins DB, Cappa C, Bertram T, Dommer A, Schill S, Forestieri S, Survilo M.  2016.  A miniature Marine Aerosol Reference Tank (miniMART) as a compact breaking wave analogue. Atmospheric Measurement Techniques. 9:4257-4267.   10.5194/amt-9-4257-2016   AbstractWebsite

In order to understand the processes governing the production of marine aerosols, repeatable, controlled methods for their generation are required. A new system, the miniature Marine Aerosol Reference Tank (miniMART), has been designed after the success of the original MART system, to approximate a small oceanic spilling breaker by producing an evolving bubble plume and surface foam patch. The smaller tank utilizes an intermittently plunging jet of water produced by a rotating water wheel, into an approximately 6 L reservoir to simulate bubble plume and foam formation and generate aerosols. This system produces bubble plumes characteristic of small whitecaps without the large external pump inherent in the original MART design. Without the pump it is possible to easily culture delicate planktonic and microbial communities in the bulk water during experiments while continuously producing aerosols for study. However, due to the reduced volume and smaller plunging jet, the absolute numbers of particles generated are approximately an order of magnitude less than in the original MART design.

Stokes, MD, Deane G, Collins DB, Cappa C, Bertram T, Dommer A, Schill S, Forestieri S, Survilo M.  2016.  A miniature Marine Aerosol Reference Tank (miniMART) as a compact breaking wave analogue. Atmospheric Measurement Techniques. 9:4257-4267.   10.5194/amt-9-4257-2016   AbstractWebsite

In order to understand the processes governing the production of marine aerosols, repeatable, controlled methods for their generation are required. A new system, the miniature Marine Aerosol Reference Tank (miniMART), has been designed after the success of the original MART system, to approximate a small oceanic spilling breaker by producing an evolving bubble plume and surface foam patch. The smaller tank utilizes an intermittently plunging jet of water produced by a rotating water wheel, into an approximately 6 L reservoir to simulate bubble plume and foam formation and generate aerosols. This system produces bubble plumes characteristic of small whitecaps without the large external pump inherent in the original MART design. Without the pump it is possible to easily culture delicate planktonic and microbial communities in the bulk water during experiments while continuously producing aerosols for study. However, due to the reduced volume and smaller plunging jet, the absolute numbers of particles generated are approximately an order of magnitude less than in the original MART design.

Xu, L, Russell LM, Burrows SM.  2016.  Potential sea salt aerosol sources from frost flowers in the pan-Arctic region. Journal of Geophysical Research-Atmospheres. 121:10840-10856.   10.1002/2015jd024713   AbstractWebsite

In order to better represent observed wintertime aerosol mass and number concentrations in the pan-Arctic (60 degrees N-90 degrees N) region, we implemented an observationally based parameterization for estimating sea salt production from frost flowers in the Community Earth System Model (CESM, version 1.2.1). In this work, we evaluate the potential influence of this sea salt source on the pan-Arctic climate. Results show that frost flower salt emissions increase the modeled surface sea salt aerosol mass concentration by roughly 200% at Barrow and 100% at Alert and accumulation-mode number concentration by about a factor of 2 at Barrow and more than a factor of 10 at Alert in the winter months when new sea ice and frost flowers are present. The magnitude of sea salt aerosol mass and number concentrations at the surface in Barrow during winter simulated by the model configuration that includes this parameterization agrees better with observations by 48% and 12%, respectively, than the standard CESM simulation without a frost flower salt particle source. At Alert, the simulation with this parameterization overestimates observed sea salt aerosol mass concentration by 150% during winter in contrast to the underestimation of 63% in the simulation without this frost flower source, while it produces particle number concentration about 14% closer to observation than the standard CESM simulation. However, because the CESM version used here underestimates transported sulfate in winter, the reference accumulation-mode number concentrations at Alert are also underestimated. Adding these frost flower salt particle emissions increases sea salt aerosol optical depth by 10% in the pan-Arctic region and results in a small cooling at the surface. The increase in salt aerosol mass concentrations of a factor of 8 provides nearly two times the cloud condensation nuclei concentration at supersaturation of 0.1%, as well as 10% increases in cloud droplet number and 40% increases in liquid water content near coastal regions adjacent to continents. These cloud changes reduce longwave cloud forcing at the top of the atmosphere by 3% and cause a small surface warming, increasing the downward longwave flux at the surface by 1.8Wm(-2) in the pan-Arctic under the present-day climate. This regional average longwave warming due to the presence of clouds attributed to frost flower sea salts is roughly half of previous observed surface longwave fluxes and cloud-forcing estimates reported in Alaska, implying that the longwave enhancement due to frost flower salts may be comparable to those estimated for anthropogenic aerosol emissions. Since the potential frost flower area is parameterized as the maximum possible region on which frost flowers grow for the modeled atmospheric temperature and sea ice conditions and the model underestimates the number of accumulation-mode particles from midlatitude anthropogenic sources transported in winter, the calculated aerosol indirect effect of frost flower sea salts in this work can be regarded an upper bound.

Lundquist, JD, Roche JW, Forrester H, Moore C, Keenan E, Perry G, Cristea N, Henn B, Lapo K, McGurk B, Cayan DR, Dettinger MD.  2016.  Yosemite Hydroclimate Network: Distributed stream and atmospheric data for the Tuolumne River watershed and surroundings. Water Resources Research. 52:7478-7489.   10.1002/2016wr019261   AbstractWebsite

Regions of complex topography and remote wilderness terrain have spatially varying patterns of temperature and streamflow, but due to inherent difficulties of access, are often very poorly sampled. Here we present a data set of distributed stream stage, streamflow, stream temperature, barometric pressure, and air temperature from the Tuolumne River Watershed in Yosemite National Park, Sierra Nevada, California, USA, for water years 2002-2015, as well as a quality-controlled hourly meteorological forcing time series for use in hydrologic modeling. We also provide snow data and daily inflow to the Hetch Hetchy Reservoir for 1970-2015. This paper describes data collected using low-visibility and low-impact installations for wilderness locations and can be used alone or as a critical supplement to ancillary data sets collected by cooperating agencies, referenced herein. This data set provides a unique opportunity to understand spatial patterns and scaling of hydroclimatic processes in complex terrain and can be used to evaluate downscaling techniques or distributed modeling. The paper also provides an example methodology and lessons learned in conducting hydroclimatic monitoring in remote wilderness.

Chenillat, F, Franks PJS, Combes V.  2016.  Biogeochemical properties of eddies in the California Current System. Geophysical Research Letters. 43:5812-5820.   10.1002/2016gl068945   AbstractWebsite

The California Current System (CCS) has intense mesoscale activity that modulates and exports biological production from the coastal upwelling system. To characterize and quantify the ability of mesoscale eddies to affect the local and regional planktonic ecosystem of the CCS, we analyzed a 10 year-long physical-biological model simulation, using eddy detection and tracking to isolate the dynamics of cyclonic and anticyclonic eddies. As they propagate westward across the shelf, cyclonic eddies efficiently transport coastal planktonic organisms and maintain locally elevated production for up to 1year (800km offshore). Anticyclonic eddies, on the other hand, have a limited impact on local production over their similar to 6month lifetime as they propagate 400km offshore. At any given time similar to 8% of the model domain was covered by eddy cores. Though the eddies cover a small area, they explain similar to 50 and 20% of the transport of nitrate and plankton, respectively.