Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Fan, WY, Shearer PM.  2018.  Coherent Seismic Arrivals in the P Wave Coda of the 2012 M(w)7.2 Sumatra Earthquake: Water Reverberations or an Early Aftershock? Journal of Geophysical Research-Solid Earth. 123:3147-3159.   10.1002/2018jb015573   AbstractWebsite

Teleseismic records of the 2012M(w)7.2 Sumatra earthquake contain prominent phases in the P wave train, arriving about 50 to 100s after the direct P arrival. Azimuthal variations in these arrivals, together with back-projection analysis, led Fan and Shearer (, ) to conclude that they originated from early aftershock(s), located approximate to 150 km northeast of the mainshock and landward of the trench. However, recently, Yue et al. (, ) argued that the anomalous arrivals are more likely water reverberations from the mainshock, based mostly on empirical Green's function analysis of a M6 earthquake near the mainshock and a water phase synthetic test. Here we present detailed back-projection and waveform analyses of three M6 earthquakes within 100km of the M(w)7.2 earthquake, including the empirical Green's function event analyzed in Yue et al. (, ). In addition, we examine the waveforms of three M5.5 reverse-faulting earthquakes close to the inferred early aftershock location in Fan and Shearer (, ). These results suggest that the reverberatory character of the anomalous arrivals in the mainshock coda is consistent with water reverberations, but the origin of this energy is more likely an early aftershock rather than delayed and displaced water reverberations from the mainshock.

Denolle, MA, Fan WY, Shearer PM.  2015.  Dynamics of the 2015 M7.8 Nepal earthquake. Geophysical Research Letters. 42:7467-7475.   10.1002/2015gl065336   AbstractWebsite

The 2015 M7.8 Nepal earthquake ruptured part of the Main Himalayan Thrust beneath Kathmandu. To study the dynamics of this event, we compute P wave spectra of the main shock and of two large aftershocks to estimate stress drop and radiated energy. We find that surface reflections (depth phases) of these shallow earthquakes produce interference that severely biases spectral measurements unless corrections are applied. Measures of earthquake dynamics for the main shock are within the range of estimates from global and regional earthquakes. We explore the azimuthal and temporal variations of radiated energy and highlight unique aspects of the M7.8 rupture. The beginning of the earthquake likely experienced a dynamic weakening mechanism immediately followed by an abrupt change in fault geometry. Correlation of backprojection results with frequency-dependent variations in the radiated energy rate and with the suggested geometry of the Main Himalayan Thrust yields new constraints on dynamic ruptures through geometrical barriers.