Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Fan, WY, Shearer PM.  2018.  Coherent Seismic Arrivals in the P Wave Coda of the 2012 M(w)7.2 Sumatra Earthquake: Water Reverberations or an Early Aftershock? Journal of Geophysical Research-Solid Earth. 123:3147-3159.   10.1002/2018jb015573   AbstractWebsite

Teleseismic records of the 2012M(w)7.2 Sumatra earthquake contain prominent phases in the P wave train, arriving about 50 to 100s after the direct P arrival. Azimuthal variations in these arrivals, together with back-projection analysis, led Fan and Shearer (, ) to conclude that they originated from early aftershock(s), located approximate to 150 km northeast of the mainshock and landward of the trench. However, recently, Yue et al. (, ) argued that the anomalous arrivals are more likely water reverberations from the mainshock, based mostly on empirical Green's function analysis of a M6 earthquake near the mainshock and a water phase synthetic test. Here we present detailed back-projection and waveform analyses of three M6 earthquakes within 100km of the M(w)7.2 earthquake, including the empirical Green's function event analyzed in Yue et al. (, ). In addition, we examine the waveforms of three M5.5 reverse-faulting earthquakes close to the inferred early aftershock location in Fan and Shearer (, ). These results suggest that the reverberatory character of the anomalous arrivals in the mainshock coda is consistent with water reverberations, but the origin of this energy is more likely an early aftershock rather than delayed and displaced water reverberations from the mainshock.

Fan, WY, Shearer PM, Ji C, Bassett D.  2016.  Multiple branching rupture of the 2009 Tonga-Samoa earthquake. Journal of Geophysical Research-Solid Earth. 121:5809-5827.   10.1002/2016jb012945   AbstractWebsite

Several source models have been proposed to explain the enigmatic 2009 Tonga-Samoa earthquake. The long-period data require a composite source model and can be fit with a normal-faulting subevent followed by one or more reverse-faulting subevents. The short-period data, in contrast, indicate a more compact rupture pattern around the epicenter. The lack of a unified source model reflects the complexity of the event. We analyze the spatiotemporal evolution of this earthquake with P wave back-projection from globally distributed stations in different frequency bands (low frequency: 0.05-0.2Hz, high frequency: 0.2-2Hz) and a multiple moment tensor inversion. The rupture propagation revealed by back-projection exhibits frequency-dependent behavior, with two branches of high-frequency-enriched bilateral rupture around the epicenter and a high-frequency-deficient rupture branch at the subduction interface. A composite source model with one M(w)8.0 normal-faulting earthquake east of the trench axis (seaward) followed by one M(w)8.1 reverse-faulting earthquake along the subduction interface west of the trench axis (landward) can explain the very long period data (200 approximate to 500s). Combined with high-resolution swath bathymetry data, the back-projection images show that the azimuth of rupture branches east of the trench axis were controlled by the geometry of bending-related faults on the Pacific plate and that the rupture branch west of the trench axis may correlate with the along-strike fore-arc segmentation. The rupture along the subduction interface was triggered by the seaward rupture and a partially subducted normal fault may have played a key role in facilitating the triggering. The apparent normal-reverse faulting interactions pose a higher seismic risk to this region than their individual strands at the northernmost corner of the Tonga subduction zone.

Fan, WY, Shearer PM.  2015.  Detailed rupture imaging of the 25 April 2015 Nepal earthquake using teleseismic P waves. Geophysical Research Letters. 42:5744-5752.   10.1002/2015gl064587   AbstractWebsite

We analyze the rupture process of the 25 April 2015 Nepal earthquake with globally recorded teleseismic P waves. The rupture propagated east-southeast from the hypocenter for about 160km with a duration of similar to 55s. Backprojection of both high-frequency (HF, 0.2 to 3Hz) and low-frequency (LF, 0.05 to 0.2Hz) P waves suggest a multistage rupture process. From the low-frequency images, we resolve an initial slow downdip (northward) rupture near the nucleation area for the first 20s (Stage 1), followed by two faster updip ruptures (20 to 40s for Stage 2 and 40 to 55s for Stage 3), which released most of the radiated energy northeast of Kathmandu. The centroid rupture power from LF backprojection agrees well with the Global Centroid Moment Tensor solution. The spatial resolution of the backprojection images is validated by applying similar analysis to nearby aftershocks. The overall rupture pattern agrees well with the aftershock distribution. A multiple-asperity model could explain the observed multistage rupture and aftershock distribution.