Export 95 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Ponganis, PJ, Kooyman GL, Van Dam R, Lemaho Y.  1999.  Physiological responses of king penguins during simulated diving to 136 m depth. Journal of Experimental Biology. 202:2819-2822. AbstractWebsite

To evaluate blood N-2 uptake and the role of the respiratory volume (air sacs/lungs) as a N-2 and O-2 reservoir in deep-diving penguins, diving respiratory volume (V-DR), heart rate (f(H)), venous P-N2, blood volume (V-b) and hemoglobin (Hb) concentration were measured in king penguins (Aptenodytes patagonicus) during forced submersions and compressions equivalent to depths up to 136 m, V-DR was 69+/-18 ml kg(-1) (mean +/- S.D.) in 62 submersions ranging from 4.4 atmospheres absolute (ATA; 1 ATA=101 kPa) (34 m) to 14.6 ATA (136 m), Submersion f(H) averaged 30+/-7 beats min(-1) (N=18), approximately 20% of pre- and post-submersion values. Venous P-N2 values during and after submersions as deep as 11.2 ATA (102 m) were all less than 2.8 atmospheres N-2 (283 kPa) above ambient pressure, a previously measured threshold for symptomatic bubble formation. Mean V-b was 83+/-8 ml kg(-1) (N=6); [Hb] was 17.6+/-0.7 g dl(-1) (N=7), On a mass-specific basis, mean V-DR, and therefore total available N-2, is 41% of that in shallow-diving penguin species. Total body O-2 stores, calculated from measured V-DR, V-b, [Hb], muscle mass and myoglobin concentration, are 45 ml kg(-1), with 23 % in the respiratory system. This small respiratory fraction in comparison with that in shallow-diving penguins suggests a lesser reliance on the respiratory oxygen store for extended breath-holding and also a reduced uptake of nitrogen at depth.

Ponganis, PJ, Kooyman GL, Sartoris D, Jobsis P.  1992.  Pinniped splenic volumes. American Journal of Physiology. 262:R322-R325. AbstractWebsite

Splenic volume was measured by computerized axial tomography in three harbor seals (Phoca vitulina) and two California sea lions (Zalophus californianus). Volumes ranged from 228 to 679 ml, representing 0.8-3.0% of calculated percentage body mass. Despite possible variation in the state of splenic contraction during the examination, these values are in the upper range of reported mammalian splenic volumes (as % of body mass). This reinforces the pinniped splenic erythrocyte storage concept.

Shiomi, K, Sato K, Ponganis PJ.  2012.  Point of no return in diving emperor penguins: is the timing of the decision to return limited by the number of strokes? Journal of Experimental Biology. 215:135-140.   10.1242/jeb.064568   AbstractWebsite

At some point in a dive, breath-hold divers must decide to return to the surface to breathe. The issue of when to end a dive has been discussed intensively in terms of foraging ecology and behavioral physiology, using dive duration as a temporal parameter. Inevitably, however, a time lag exists between the decision of animals to start returning to the surface and the end of the dive, especially in deep dives. In the present study, we examined the decision time in emperor penguins under two different conditions: during foraging trips at sea and during dives at an artificial isolated dive hole. It was found that there was an upper limit for the decision-to-return time irrespective of dive depth in birds diving at sea. However, in a large proportion of dives at the isolated dive hole, the decision-to-return time exceeded the upper limit at sea. This difference between the decision times in dives at sea versus the isolated dive hole was accounted for by a difference in stroke rate. The stroke rates were much lower in dives at the isolated hole and were inversely correlated with the upper limit of decision times in individual birds. Unlike the decision time to start returning, the cumulative number of strokes at the decision time fell within a similar range in the two experiments. This finding suggests that the number of strokes, but not elapsed time, constrained the decision of emperor penguins to return to the surface. While the decision to return and to end a dive may be determined by a variety of ecological, behavioral and physiological factors, the upper limit to that decision time may be related to cumulative muscle workload.

Newsome, LR, Ponganis PJ, Reichman R, Nakaji N, Jaski B, Haltley M.  1992.  Portable percutaneous cardiopulmonary bypass: use in supported coronary angioplasty, aortic valvuloplasty, and cardiac arrest. Journal of Cardiothoracic and Vascular Anesthesia. 6:328-331.   10.1016/1053-0770(92)90151-V   Abstract

Portable cardiopulmonary bypass (CPB) systems consisting of a battery source and charger, centrifugal pump, hollow-fiber oxygenator, pump tubing, and large-bore thin-walled femoral arterial and venous cannulae have been commercially available for the past few years. Modifications of the Seldinger technique to allow percutaneous placement facilitate the expeditious institution of CPB in virtually any hospital setting.‘” As a result of this new technology, “supported” percutaneous transluminal coronary angioplasty (PTCA) and aortic valvuloplasty (AVP), which use the prophylactic institution of percutaneous CPB prior to the beginning of these procedures, were reported in 1990. Additionally, these portable systems have been used at various medical centers to help resuscitate patients suffering from cardiac arrest from a variety of causes. Two case histories representative of the use of such a system in both scenarios and including some anesthetic considerations for the use of such systems, specifically in supported angioplasties, are reported. In addition, the authors’ total experience with portable CPB is described.

Ponganis, PJ, Kooyman GL, Starke LN, Kooyman CA, Kooyman TG.  1997.  Post-dive blood lactate concentrations in emperor penguins, Aptenodytes forsteri. Journal of Experimental Biology. 200:1623-1626. AbstractWebsite

In order to determine an aerobic diving limit (ADL) in emperor penguins (Aptenodytes forsteri), post-dive blood lactate concentrations were measured in penguins foraging at an isolated sea ice hole. Resting lactate concentrations were 1.2-2.7 mmol l(-1). Serial samples revealed that lactate level usually peaked within 5 min after dives and that 7-12 min was required for lactate concentrations to decrease from 5-8 mmol l(-1) to less than 2.5 mmol l(-1). Post-dive lactate level was not elevated above 3 mmol l(-1) for dives shorter than 5 min. Two-phase regression analysis revealed a transition at 5.6 min in the post-dive lactate level versus diving duration relationship. All dives longer than 7 min were associated with lactate concentrations greater than 5 mmol l(-1). We conclude that the ADL in emperor penguins ranges between 5 and 7 min. These are the first determinations of post-dive lactate concentrations in any free-diving bird and are currently the only physiological assessment of an ADL in an avian species.

Ponganis, PJ, Van Dam RP, Levenson DH, Knower T, Ponganis KV, Marshall G.  2003.  Regional heterothermy and conservation of core temperature in emperor penguins diving under sea ice. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology. 135:477-487.   10.1016/s1095-6433(03)00133-8   AbstractWebsite

Temperatures were recorded at several body sites in emperor penguins (Aptenodytes forsteri) diving at an isolated dive hole in order to document temperature profiles during diving and to evaluate the role of hypothermia in this well-studied model of penguin diving physiology. Grand mean temperatures (+/-S.E.) in central body sites during dives were: stomach: 37.1 +/- 0.2 degreesC (n = 101 dives in five birds), pectoral muscle: 37.8 +/- 0.1 degreesC (n = 71 dives in three birds) and axillary/brachial veins: 37.9 +/- 0.1 degreesC (n = 97 dives in three birds). Mean diving temperature and duration correlated negatively at only one site in one bird (femoral vein, r = -0.59, P < 0.05; range < 1 degreesC). In contrast, grand mean temperatures in the wing vein, foot vein and lumbar subcutaneous tissue during dives were 7.6 +/- 0.7 degreesC (n = 157 dives in three birds), 20.2 +/- 1.2 degreesC (n = 69 in three birds) and 35.2 +/- 0.2 degreesC (n = 261 in six birds), respectively. Mean limb temperature during dives negatively correlated with diving duration in all six birds (r = -0.29 to -0.60, P < 0.05). In two of six birds, mean diving subcutaneous temperature negatively correlated with diving duration (r = -0.49 and -0.78, P < 0.05). Sub-feather temperatures decreased from 31 to 35 T during rest periods to a grand mean of 15.0 +/- 0.7 degreesC during 68 dives of three birds; mean diving temperature and duration correlated negatively in one bird (r = -0.42, P < 0.05). In general, pectoral, deep venous and even stomach temperatures during diving reflected previously measured vena caval temperatures of 37-39 degreesC more closely than the anterior abdominal temperatures (19-30 degreesC) recently recorded in diving emperors. Although prey ingestion can result in cooling in the stomach, these findings and the lack of negative correlations between internal temperatures and diving duration do not support a role for hypothermia-induced metabolic suppression of the abdominal organs as a mechanism of extension of aerobic dive time in emperor penguins diving at the isolated dive hole. Such high temperatures within the body and the observed decreases in limb, anterior abdomen, subcutaneous and sub-feather temperatures are consistent with preservation of core temperature and cooling of an outer body shell secondary to peripheral vasoconstriction, decreased insulation of the feather layer, and conductive/convective heat loss to the water environment during the diving of these emperor penguins. (C) 2003 Elsevier Science Inc. All fights reserved.

Ponganis, PJ, Stockard TK, Meir JU, Williams CL, Ponganis KV, Van Dam RP, Howard R.  2007.  Returning on empty: extreme blood O-2 depletion underlies dive capacity of emperor penguins. Journal of Experimental Biology. 210:4279-4285.   10.1242/jeb.011221   AbstractWebsite

Blood gas analyses from emperor penguins (Aptenodytes forsteri) at rest, and intravascular P-O2 profiles from free-diving birds were obtained in order to examine hypoxemic tolerance and utilization of the blood O-2 store during dives. Analysis of blood samples from penguins at rest revealed arterial P(O2)s and O-2 contents of 68 +/- 7 mmHg (1 mmHg= 133.3 Pa) and 22.5 +/- 1.3 ml O-2 dl(-1) (N= 3) and venous values of 41 +/- 10 mmHg and 17.4 +/- 2.9 ml O-2 dl(-1) (N= 9). Corresponding arterial and venous Hb saturations for a hemoglobin (Hb) concentration of 18 g dl(-1) were > 91% and 70%, respectively. Analysis of P-O2 profiles obtained from birds equipped with intravascular P-O2 electrodes and backpack recorders during dives revealed that (1) the decline of the final blood P-O2 of a dive in relation to dive duration was variable, (2) final venous P-O2 values spanned a 40-mmHg range at the previously measured aerobic dive limit (ADL; dive duration associated with onset of post-dive blood lactate accumulation), (3) final arterial, venous and previously measured air sac P-O2 values were indistinguishable in longer dives, and (4) final venous P-O2 values of longer dives were as low as 1-6 mmHg during dives. Although blood O-2 is not depleted at the ADL, nearly complete depletion of the blood O-2 store occurs in longer dives. This extreme hypoxemic tolerance, which would be catastrophic in many birds and mammals, necessitates biochemical and molecular adaptations, including a shift in the O-2-Hb dissociation curve of the emperor penguin in comparison to those of most birds. A relatively higher-affinity Hb is consistent with blood P-O2 values and O-2 contents of penguins at rest.

Kooyman, GL, Ponganis PJ.  2017.  Rise and fall of Ross Sea emperor penguin colony populations: 2000 to 2012. Antarctic Science. 29:201-208.   10.1017/s0954102016000559   AbstractWebsite

There are seven emperor penguin (Aptenodytes forsteri) colonies distributed throughout the traditional boundaries of the Ross Sea from Cape Roget to Cape Colbeck. This coastline is c. 10% of the entire coast of Antarctica. From 2000 to 2012, there has been a nearly continuous record of population size of most, and sometimes all, of these colonies. Data were obtained by analysing aerial photographs. We found large annual variations in populations of individual colonies, and conclude that a trend from a single emperor penguin colony may not be a good environmental sentinel. There are at least four possibilities for census count fluctuations: i) this species is not bound to a nesting site like other penguins, and birds move within the colony and possibly to other colonies, ii) harsh environmental conditions cause a die-off of chicks in the colony or of adults elsewhere, iii) the adults skip a year of breeding if pre-breeding foraging is inadequate and iv) if sea ice conditions are unsatisfactory at autumn arrival of the adults, they skip breeding or go elsewhere. Such variability indicates that birds at all Ross Sea colonies should be counted annually if there is to be any possibility of understanding the causes of population changes.

Sato, K, Shiomi K, Watanabe Y, Watanuki Y, Takahashi A, Ponganis PJ.  2010.  Scaling of swim speed and stroke frequency in geometrically similar penguins: they swim optimally to minimize cost of transport. Proceedings of the Royal Society B-Biological Sciences. 277:707-714.   10.1098/rspb.2009.1515   AbstractWebsite

It has been predicted that geometrically similar animals would swim at the same speed with stroke frequency scaling with mass(-1/3). In the present study, morphological and behavioural data obtained from free-ranging penguins (seven species) were compared. Morphological measurements support the geometrical similarity. However, cruising speeds of 1.8-2.3 m s(-1) were significantly related to mass(0.08) and stroke frequencies were proportional to mass(-0.29). These scaling relationships do not agree with the previous predictions for geometrically similar animals. We propose a theoretical model, considering metabolic cost, work against mechanical forces (drag and buoyancy), pitch angle and dive depth. This new model predicts that: (i) the optimal swim speed, which minimizes the energy cost of transport, is proportional to (basal metabolic rate/drag)(1/3) independent of buoyancy, pitch angle and dive depth; (ii) the optimal speed is related to mass(0.05); and (iii) stroke frequency is proportional to mass(-0.28). The observed scaling relationships of penguins support these predictions, which suggest that breath-hold divers swam optimally to minimize the cost of transport, including mechanical and metabolic energy during dive.

Van Dam, RP, Ponganis PJ, Ponganis KV, Levenson DH, Marshall G.  2002.  Stroke frequencies of emperor penguins diving under sea ice. Journal of Experimental Biology. 205:3769-3774. AbstractWebsite

During diving, intermittent swim stroke patterns, ranging from burst/coast locomotion to prolonged gliding, represent potential energy conservation mechanisms that could extend the duration of aerobic metabolism and, hence, increase the aerobic dive limit (ADL, dive duration associated with onset of lactate accumulation). A 5.6 min ADL for emperor penguins had been previously determined with lactate measurements after dives of <50 m depth. In order to assess locomotory patterns during such dives, longitudinal acceleration was measured with an attached accelerometer in 44 dives of seven adult birds diving from an isolated dive hole in the sea ice of McMurdo Sound, Antarctica. Detection of wing strokes in processed accelerometer data was verified in selected birds with analysis of simultaneous Crittercam underwater video footage. Mean dive duration of birds equipped with the accelerometer and a time-depth recorder (TDR) was 5.7+/-2.2 min; 48% of these dives were greater than the measured 5.6 min ADL (ADL(M)). Highest stroke frequencies (0.92+/-0.31Hz, N=981) occurred during the initial descent to 12 m depth. Swimming effort was reduced to a mean stroke frequency <0.70 Hz during other phases of the dive (while traveling below 12 m depth, during foraging ascents/descents to and from the sub-ice surface, and during final ascents to exit). The longest stroke interval (8.6 s) occurred during a feeding excursion to the undersurface of the ice. In dives >ADL(M), mean stroke frequency during travel segments was significantly less than that in dives 10 s) periods of prolonged gliding during these shallow (<60 m) foraging dives. However, a stroke/glide pattern was evident with more than 50% of strokes associated with a stroke interval >1.6 s, and with lower stroke frequency associated with increased dive duration.

Sato, K, Watanuki Y, Takahashi A, Miller PJO, Tanaka H, Kawabe R, Ponganis PJ, Handrich Y, Akamatsu T, Watanabe Y, Mitani Y, Costa DP, Bost CA, Aoki K, Amano M, Trathan P, Shapiro A, Naito Y.  2007.  Stroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceans. Proceedings of the Royal Society B-Biological Sciences. 274:471-477.   10.1098/rspb.2006.0005   AbstractWebsite

It is obvious, at least qualitatively, that small animals move their locomotory apparatus faster than large animals: small insects move their wings invisibly fast, while large birds flap their wings slowly. However, quantitative observations have been difficult to obtain from free-ranging swimming animals. We surveyed the swimming behaviour of animals ranging from 0.5 kg seabirds to 30 000 kg sperm whales using animal-borne accelerometers. Dominant stroke cycle frequencies of swimming specialist seabirds and marine mammals were proportional to mass(-0.29) (R-2=0.99, n=17 groups), while propulsive swimming speeds of 1-2 m s(-1) were independent of body size. This scaling relationship, obtained from breath-hold divers expected to swim optimally to conserve oxygen, does not agree with recent theoretical predictions for optimal swimming. Seabirds that use their wings for both swimming and flying stroked at a lower frequency than other swimming specialists of the same size, suggesting a morphological trade-off with wing size and stroke frequency representing a compromise. In contrast, foot-propelled diving birds such as shags had similar stroke frequencies as other swimming specialists. These results suggest that muscle characteristics may constrain swimming during cruising travel, with convergence among diving specialists in the proportions and contraction rates of propulsive muscles.

Sato, K, Shiomi K, Marshall G, Kooyman GL, Ponganis PJ.  2011.  Stroke rates and diving air volumes of emperor penguins: implications for dive performance. Journal of Experimental Biology. 214:2854-2863.   10.1242/jeb.055723   AbstractWebsite

Emperor penguins (Aptenodytes forsteri), both at sea and at an experimental dive hole, often have minimal surface periods even after performance of dives far beyond their measured 5.6 min aerobic dive limit (ADL: dive duration associated with the onset of post-dive blood lactate accumulation). Accelerometer-based data loggers were attached to emperor penguins diving in these two different situations to further evaluate the capacity of these birds to perform such dives without any apparent prolonged recovery periods. Minimum surface intervals for dives as long as 10 min were less than 1 min at both sites. Stroke rates for dives at sea were significantly greater than those for dives at the isolated dive hole. Calculated diving air volumes at sea were variable, increased with maximum depth of dive to a depth of 250 m, and decreased for deeper dives. It is hypothesized that lower air volumes for the deepest dives are the result of exhalation of air underwater. Mean maximal air volumes for deep dives at sea were approximately 83% greater than those during shallow (<50 m) dives. We conclude that (a) dives beyond the 5.6. min ADL do not always require prolongation of surface intervals in emperor penguins, (b) stroke rate at sea is greater than at the isolated dive hole and, therefore, a reduction in muscle stroke rate does not extend the duration of aerobic metabolism during dives at sea, and (c) a larger diving air volume facilitates performance of deep dives by increasing the total body O(2) store to 68 ml O(2) kg(-1). Although increased O(2) storage and cardiovascular adjustments presumably optimize aerobic metabolism during dives, enhanced anaerobic capacity and hypoxemic tolerance are also essential for longer dives. This was exemplified by a 27.6 min dive, after which the bird required 6 min before it stood up from a prone position, another 20 min before it began to walk, and 8.4 h before it dived again.

Ponganis, PJ, Costello ML, Starke LN, MathieuCostello O, Kooyman GL.  1997.  Structural and biochemical characteristics of locomotory muscles of emperor penguins, Aptenodytes forsteri. Respiration Physiology. 109:73-80.   10.1016/s0034-5687(97)84031-5   AbstractWebsite

Structural and biochemical characteristics of the primary muscles used for swimming (pectoralis, PEC and supracoracoideus, SC) were compared to those of leg muscles in emperor penguins (Aptenodytes forsteri). The mass of PEG-SC was four times that of the leg musculature, and mitochondrial volume density in PEC and SC (4%) was two-thirds that in sartorius (S) and gastrocnemius. The differences in muscle mass and mitochondrial density yielded a 2.2-fold greater total mitochondrial content in PEG-SC than leg muscles, which appears to account for the 1.8-fold greater whole-body highest oxygen consumption previously recorded in emperor penguins during swimming compared to walking. Calculation of maximal mitochondrial O-2 consumption in PEG-SC and leg muscle yielded values of 5.8-6.9 mi O-2 ml(-1) min(-1), which are similar to those in locomotory muscles of most mammals and birds. A distinct feature of emperor penguin muscle was its myoglobin content, with concentrations in PEG-SC (6.4 g 100 g(-1)) among the highest measured in any species. This resulted in a PEG-SC O-2 store greater than that of the entire blood. In addition, ratios of myoglobin content to mitochondrial volume density and to citrate synthase activity were 4.4 and 2.5 times greater in PEG than in S, indicative of the significant role of myoglobin in the adaptation of muscle to cardiovascular adjustments during diving. (C) 1997 Elsevier Science B.V.

Ponganis, PJ, Van Dam RP, Marshall G, Knower T, Levenson DH.  2000.  Sub-ice foraging behavior of emperor penguins. Journal of Experimental Biology. 203:3275-3278. AbstractWebsite

Emperor penguins (Aptenodytes forsteri) were equipped with a remote underwater video camera, the Crittercam, to evaluate sub-ice foraging behavior while the birds dived from an isolated dive hole. Three birds dived and foraged successfully for Ih periods after being trained to wear and to dive with a harness for camera attachment. Video and depth profile recordings revealed that emperor penguins travel at shallow depths (<50 m), ascend to the undersurface of the ice to feed on fish, and descend back to depth to return to the exit hole. Although the mean durations of dives of individual birds with the Crittercam were 21-35 % shorter than the diving durations of these same birds without the camera, the dive profiles in both situations were similar, thus demonstrating a similar foraging strategy in birds diving without the camera. Despite shorter diving durations with the camera, the penguins were still successful at prey capture in 80 % of 91 dives greater than 1 min in duration. Prey included the sub-ice fish Pagothenia borchgrevinki. Hunting ascents (from depth to within 5 m of the surface) occurred in 85 % of dives, ranged from zero to three per dive, and were associated with successful prey capture in 77 % of 128 ascents, Occasionally, several fish were captured during a single ascent, These observations and this application of video technology create a model for further physiological and behavioral studies of foraging, and also emphasize the potential importance of shallow dives as sources of food intake for emperor penguins during foraging trips to sea.

Spragg, RG, Ponganis PJ, Marsh JJ, Rau GA, Bernhard W.  2004.  Surfactant from diving aquatic mammals. Journal of Applied Physiology. 96:1626-1632.   10.1152/japplphysiol.00898.2003   AbstractWebsite

Diving mammals that descend to depths of 50 - 70 m or greater fully collapse the gas exchanging portions of their lungs and then reexpand these areas with ascent. To investigate whether these animals may have evolved a uniquely developed surfactant system to facilitate repetitive alveolar collapse and expansion, we have analyzed surfactant in bronchoalveolar lavage fluid (BAL) obtained from nine pinnipeds and from pigs and humans. In contrast to BAL from terrestrial mammals, BAL from pinnipeds has a higher concentration of phospholipid and relatively more fluidic phosphatidylcholine molecular species, perhaps to facilitate rapid spreading during alveolar reexpansion. Normalized concentrations of hydrophobic surfactant proteins B and C were not significantly different among pinnipeds and terrestrial mammals by immunologic assay, but separation of proteins by gel electrophoresis indicated a greater content of surfactant protein B in elephant seal surfactant than in human surfactant. Remarkably, surfactant from the deepest diving pinnipeds produced moderately elevated in vitro minimum surface tension measurements, a finding not explained by the presence of protein or neutral lipid inhibitors. Further study of the composition and function of pinniped surfactants may contribute to the design of optimized therapeutic surfactants.

Ponganis, PJ, Ponganis EP, Ponganis KV, Kooyman GL, Gentry RL, Trillmich F.  1990.  Swimming velocities in otariids. Canadian Journal of Zoology-Revue Canadienne De Zoologie. 68:2105-2112.   10.1139/z90-293   AbstractWebsite

Velocities during surface swimming and diving were measured with microprocessor recorders in four otariid species: northern fur seals (Callorhinusursinus), Galapagos sea lions (Zalophuscalifornianuswollebaeki), Galapagos fur seals (Arctocephalusgalapagoensis), and Hooker's sea lions (Phocarctoshookeri). Mean surface swimming velocities ranged from 0.6 to 1.9 m/s. Transit distances to feeding sites (1.2–90 km) were calculated using these velocities. Dive velocities, recorded every 15 s, ranged from 0.9 to 1.9 m/s. These velocities were consistent with calculated minimal cost of transport velocities in the smaller species. Using time partitioning, the metabolic cost of a northern fur seal foraging trip is estimated on the basis of recorded velocities and their calculated energy costs. This value is within 6% of that previously made with doubly labeled water techniques.

Ponganis, PJ, Van Dam RP, Knower T, Levenson DH.  2001.  Temperature regulation in emperor penguins foraging under sea ice. Comparative Biochemistry and Physiology a-Molecular and Integrative Physiology. 129:811-820.   10.1016/s1095-6433(01)00349-x   AbstractWebsite

Inferior vena caval (IVC) and anterior abdominal (AA) temperatures were recorded in seven emperor penguins (Aptenodytes foresteri) foraging under sea ice in order to evaluate the hypothesis that hypothermia-induced metabolic suppression might extend aerobic diving time. Diving durations ranged from 1 to 12.5 min, with 39% of dives greater than the measured aerobic dive limit of 5.6 min. Anterior abdominal temperature decreased progressively throughout dives, and partially returned to pre-dive values during surface intervals. The lowest AA temperature was 19 degreesC. However, mean AA temperatures during dives did not correlate with diving durations. In six of seven penguins, only minor fluctuations in IVC temperatures occurred during diving. These changes were often elevations in temperature. In the one exception, although IVC temperatures decreased, the reductions were less than those in the anterior abdomen and did not correlate with diving durations. Because of these findings, we consider it unlikely that regional hypothermia in emperor penguins leads to a significant reduction in oxygen consumption of the major organs within the abdominal core. Rather, temperature profiles during dives are consistent with a model of regional heterothermy with conservation of core temperature, peripheral vasoconstriction, and cooling of an outer body shell. (C) 2001 Elsevier Science Inc. All rights reserved.

Barber-Meyer, SM, Kooyman GL, Ponganis PJ.  2008.  Trends in western Ross Sea emperor penguin chick abundances and their relationships to climate. Antarctic Science. 20:3-11.   10.1017/s0954102007000673   AbstractWebsite

The emperor penguin (Aptenodytes forsteri) is extremely dependent on the extent and stability of sea ice, which may make the species particularly susceptible to environmental change. In order to appraise the stability of the emperor penguin populations at six colonies in the western Ross Sea, we used linear regression analysis to evaluate chick abundance trends (1983-2005) and Pearson's r correlation to assess their relation to two local and two large-scale climate variables. We detected only one significant abundance trend; the Cape Roget colony increased from 1983 to 1996 (n = 6). Higher coefficients of variation in chick abundances at smaller colonies (Cape Crozier, Beaufort Island, Franklin Island) suggest that such colonies occupy marginal habitat, and are more susceptible to environmental change. We determined chick abundance to be most often correlated with local Ross Sea climate variables (sea ice extent and sea surface temperature), but not in consistent patterns across the colonies. We propose that chick abundance is most impacted by fine scale sea ice extent and local weather events, which are best evaluated by on-site assessments. We did not find sufficient evidence to reject the hypothesis that the overall emperor penguin population in the Ross Sea was stable during this period.

Levenson, DH, Ponganis PJ, Crognale MA, Deegan JF, Dizon A, Jacobs GH.  2006.  Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter. Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology. 192:833-843.   10.1007/s00359-006-0121-x   AbstractWebsite

Rod and cone visual pigments of 11 marine carnivores were evaluated. Rod, middle/long-wavelength sensitive (M/L) cone, and short-wavelength sensitive (S) cone opsin (if present) sequences were obtained from retinal mRNA. Spectral sensitivity was inferred through evaluation of known spectral tuning residues. The rod pigments of all but one of the pinnipeds were similar to those of the sea otter, polar bear, and most other terrestrial carnivores with spectral peak sensitivities (lambda(max)) of 499 or 501 nm. Similarly, the M/L cone pigments of the pinnipeds, polar bear, and otter had inferred lambda(max) of 545 to 560 nm. Only the rod opsin sequence of the elephant seal had sensitivity characteristic of adaptation for vision in the marine environment, with an inferred lambda(max) of 487 nm. No evidence of S cones was found for any of the pinnipeds. The polar bear and otter had S cones with inferred lambda(max) of similar to 440 nm. Flicker-photometric ERG was additionally used to examine the in situ sensitivities of three species of pinniped. Despite the use of conditions previously shown to evoke cone responses in other mammals, no cone responses could be elicited from any of these pinnipeds. Rod photoreceptor responses for all three species were as predicted by the genetic data.

Williams, CL, Meir JU, Ponganis PJ.  2011.  What triggers the aerobic dive limit? Patterns of muscle oxygen depletion during dives of emperor penguins Journal of Experimental Biology. 214:1802-1812.   10.1242/jeb.052233   AbstractWebsite

The physiological basis of the aerobic dive limit (ADL), the dive duration associated with the onset of post-dive blood lactate elevation, is hypothesized to be depletion of the muscle oxygen (O(2)) store. A dual wavelength near-infrared spectrophotometer was developed and used to measure myoglobin (Mb) O(2) saturation levels in the locomotory muscle during dives of emperor penguins (Aptenodytes forsteri). Two distinct patterns of muscle O(2) depletion were observed. Type A dives had a monotonic decline, and, in dives near the ADL, the muscle O(2) store was almost completely depleted. This pattern of Mb desaturation was consistent with lack of muscle blood flow and supports the hypothesis that the onset of post-dive blood lactate accumulation is secondary to muscle O(2) depletion during dives. The mean type A Mb desaturation rate allowed for calculation of a mean muscle O(2) consumption of 12.4. ml O(2). kg(-1) muscle. min(-1), based on a Mb concentration of 6.4. g 100. g(-1) muscle. Type B desaturation patterns demonstrated a more gradual decline, often reaching a mid-dive plateau in Mb desaturation. This mid-dive plateau suggests maintenance of some muscle perfusion during these dives. At the end of type B dives, Mb desaturation rate increased and, in dives beyond the ADL, Mb saturation often reached near 0%. Thus, although different physiological strategies may be used during emperor penguin diving, both Mb desaturation patterns support the hypothesis that the onset of post-dive lactate accumulation is secondary to muscle O(2) store depletion.