Publications

Export 96 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
Ponganis, PJ, Kooyman GL, h. Ridgway S.  2003.  Comparative Diving Physiology. Bennett and Elliott's physiology and medicine of diving. ( Brubakk AO, Neuman TS, Bennett PB, Elliott DH, Eds.).:16., Edinburgh; New York: Saunders Abstract
n/a
Ponganis, PJ, Gentry RL, Ponganis EP, Ponganis K.  1989.  Analysis of swimming velocity in deep and shallow dives of two northern fur seals, Callorhinus ursinus. Proceedings of the Eighth Biennial Conference on the Biology of Marine Mammals. , Pacific Grove, Calif. Abstract
n/a
S
Sato, K, Shiomi K, Marshall G, Kooyman GL, Ponganis PJ.  2011.  Stroke rates and diving air volumes of emperor penguins: implications for dive performance. Journal of Experimental Biology. 214:2854-2863.   10.1242/jeb.055723   AbstractWebsite

Emperor penguins (Aptenodytes forsteri), both at sea and at an experimental dive hole, often have minimal surface periods even after performance of dives far beyond their measured 5.6 min aerobic dive limit (ADL: dive duration associated with the onset of post-dive blood lactate accumulation). Accelerometer-based data loggers were attached to emperor penguins diving in these two different situations to further evaluate the capacity of these birds to perform such dives without any apparent prolonged recovery periods. Minimum surface intervals for dives as long as 10 min were less than 1 min at both sites. Stroke rates for dives at sea were significantly greater than those for dives at the isolated dive hole. Calculated diving air volumes at sea were variable, increased with maximum depth of dive to a depth of 250 m, and decreased for deeper dives. It is hypothesized that lower air volumes for the deepest dives are the result of exhalation of air underwater. Mean maximal air volumes for deep dives at sea were approximately 83% greater than those during shallow (<50 m) dives. We conclude that (a) dives beyond the 5.6. min ADL do not always require prolongation of surface intervals in emperor penguins, (b) stroke rate at sea is greater than at the isolated dive hole and, therefore, a reduction in muscle stroke rate does not extend the duration of aerobic metabolism during dives at sea, and (c) a larger diving air volume facilitates performance of deep dives by increasing the total body O(2) store to 68 ml O(2) kg(-1). Although increased O(2) storage and cardiovascular adjustments presumably optimize aerobic metabolism during dives, enhanced anaerobic capacity and hypoxemic tolerance are also essential for longer dives. This was exemplified by a 27.6 min dive, after which the bird required 6 min before it stood up from a prone position, another 20 min before it began to walk, and 8.4 h before it dived again.

Sato, K, Watanuki Y, Takahashi A, Miller PJO, Tanaka H, Kawabe R, Ponganis PJ, Handrich Y, Akamatsu T, Watanabe Y, Mitani Y, Costa DP, Bost CA, Aoki K, Amano M, Trathan P, Shapiro A, Naito Y.  2007.  Stroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceans. Proceedings of the Royal Society B-Biological Sciences. 274:471-477.   10.1098/rspb.2006.0005   AbstractWebsite

It is obvious, at least qualitatively, that small animals move their locomotory apparatus faster than large animals: small insects move their wings invisibly fast, while large birds flap their wings slowly. However, quantitative observations have been difficult to obtain from free-ranging swimming animals. We surveyed the swimming behaviour of animals ranging from 0.5 kg seabirds to 30 000 kg sperm whales using animal-borne accelerometers. Dominant stroke cycle frequencies of swimming specialist seabirds and marine mammals were proportional to mass(-0.29) (R-2=0.99, n=17 groups), while propulsive swimming speeds of 1-2 m s(-1) were independent of body size. This scaling relationship, obtained from breath-hold divers expected to swim optimally to conserve oxygen, does not agree with recent theoretical predictions for optimal swimming. Seabirds that use their wings for both swimming and flying stroked at a lower frequency than other swimming specialists of the same size, suggesting a morphological trade-off with wing size and stroke frequency representing a compromise. In contrast, foot-propelled diving birds such as shags had similar stroke frequencies as other swimming specialists. These results suggest that muscle characteristics may constrain swimming during cruising travel, with convergence among diving specialists in the proportions and contraction rates of propulsive muscles.

Sato, K, Ponganis PJ, Habara Y, Naito Y.  2005.  Emperor penguins adjust swim speed according to the above-water height of ice holes through which they exit. Journal of Experimental Biology. 208:2549-2554.   10.1242/jeb.01665   AbstractWebsite

Emperor penguins leap from the water onto the sea ice. Their ability to reach above-water height depends critically on initial vertical speed of their leaping, assuming that the kinetic energy is converted to gravitational potential energy. We deliberately changed the above-water heights of ice hole exits, in order to examine whether penguins adjusted swim speed in accordance with the above-water height of the ice. Penguins were maintained in a corral on the fast ice in Antarctica, and voluntarily dived through two artificial ice holes. Data loggers were deployed on the penguins to monitor under water behavior. Nine instrumented penguins performed 386 leaps from the holes during experiments. The maximum swim speeds within 1 s before the exits through the holes correlated significantly with the above-water height of the holes. Penguins adopted higher speed to exit through the higher holes than through the lower holes. Speeds of some failed exits were lower than the theoretical minimum values to reach a given height. Penguins failed to exit onto the sea ice in a total of 37 of the trials. There was no preference to use lower holes after they failed to exit through the higher holes. Rather, swim speed was increased for subsequent attempts after failed leaps. These data demonstrated that penguins apparently recognized the above-water height of holes and adopted speeds greater than the minimal vertical speeds to reach the exit height. It is likely, especially in the case of higher holes (>40 cm), that they chose minimum speeds to exit through the holes to avoid excess energy for swimming before leaping. However, some exceptionally high speeds were recorded when they directly exited onto the ice from lower depths. In those cases, birds could increase swim speed without strokes for the final seconds before exit and they only increased the steepness of their body angles as they surfaced, which indicates that the speed required for leaps by emperor penguins were aided by buoyancy, and that penguins can sometimes exit through the ice holes without any stroking effort before leaping.

Sato, K, Shiomi K, Watanabe Y, Watanuki Y, Takahashi A, Ponganis PJ.  2010.  Scaling of swim speed and stroke frequency in geometrically similar penguins: they swim optimally to minimize cost of transport. Proceedings of the Royal Society B-Biological Sciences. 277:707-714.   10.1098/rspb.2009.1515   AbstractWebsite

It has been predicted that geometrically similar animals would swim at the same speed with stroke frequency scaling with mass(-1/3). In the present study, morphological and behavioural data obtained from free-ranging penguins (seven species) were compared. Morphological measurements support the geometrical similarity. However, cruising speeds of 1.8-2.3 m s(-1) were significantly related to mass(0.08) and stroke frequencies were proportional to mass(-0.29). These scaling relationships do not agree with the previous predictions for geometrically similar animals. We propose a theoretical model, considering metabolic cost, work against mechanical forces (drag and buoyancy), pitch angle and dive depth. This new model predicts that: (i) the optimal swim speed, which minimizes the energy cost of transport, is proportional to (basal metabolic rate/drag)(1/3) independent of buoyancy, pitch angle and dive depth; (ii) the optimal speed is related to mass(0.05); and (iii) stroke frequency is proportional to mass(-0.28). The observed scaling relationships of penguins support these predictions, which suggest that breath-hold divers swam optimally to minimize the cost of transport, including mechanical and metabolic energy during dive.

Shiomi, K, Narazaki T, Sato K, Shimatani K, Arai N, Ponganis PJ, Miyazaki N.  2010.  Data-processing artefacts in three-dimensional dive path reconstruction from geomagnetic and acceleration data. Aquatic Biology. 8:299-304.   10.3354/ab00239   AbstractWebsite

Tri-axis magnetism and acceleration data loggers have recently been used to obtain time-series headings and, consequently, the 3-dimensional dive paths of aquatic animals. However, problems may arise in the resulting calculation process with multiple parameters. In this study, the dive paths of loggerhead turtles and emperor penguins were reconstructed. For both species, apparently unrealistic movements were found. Time-series heading data of turtles showed small regular fluctuations synchronous with stroking. In the dive paths of penguins, infrequent abrupt changes in heading were observed during stroke cycles. These were unlikely to represent true behaviours according to observations of underwater behaviour and tri-axis magnetism and acceleration data. Based on the relationship between sampling frequency and frequency of body posture change, we suggest that (1) the changes in the animals' posture concurrent with strokes and (2) the mismatched treatment (i.e. filtering and non-filtering) of the acceleration and magnetism data caused the artefacts. These inferences are supported by the results of simulations. For data sets obtained at a given sampling frequency, the error pattern in calculated dive paths is likely to differ depending on the frequency and amplitude of body posture changes and in swim speed. In order to avoid misinterpretation, it is necessary to understand the assumptions and inherent problems of the calculation methods as well as the behavioural characteristics of the study animals.

Shiomi, K, Sato K, Mitamura H, Arai N, Naito Y, Ponganis PJ.  2008.  Effect of ocean current on the dead-reckoning estimation of 3-D dive paths of emperor penguins. Aquatic Biology. 3:265-270.   10.3354/ab00087   AbstractWebsite

The dead-reckoning technique is a useful method for obtaining 3-D movement data of aquatic animals. However, such positional data include an accumulative error. Understanding the source of the error is important for proper data interpretation. In order to determine whether ocean currents affect dive paths calculated by dead-reckoning, as has previously been hypothesized, we examined the directions of the estimated positions relative to the known real points (error direction) and the relationship between the error direction and the current direction. 3-D dive paths of emperor penguins Aptenodytes forsteri diving at isolated dive holes in eastern McMurdo Sound were reconstructed by dead-reckoning, and the net error and error direction were calculated. The net error correlated positively with the dive duration. The error directions were not distributed uniformly, and the mean error direction tended to be north of the starting point of dives. Because there was a southward-flowing current in eastern McMurdo Sound, the ocean current was likely to affect the calculated dive paths. Therefore, the method of error correction generally used, in which the net error divided by the dive duration is applied to each estimated position, is realistically appropriate, provided that the current does not change significantly during a dive.

Shiomi, K, Sato K, Ponganis PJ.  2012.  Point of no return in diving emperor penguins: is the timing of the decision to return limited by the number of strokes? Journal of Experimental Biology. 215:135-140.   10.1242/jeb.064568   AbstractWebsite

At some point in a dive, breath-hold divers must decide to return to the surface to breathe. The issue of when to end a dive has been discussed intensively in terms of foraging ecology and behavioral physiology, using dive duration as a temporal parameter. Inevitably, however, a time lag exists between the decision of animals to start returning to the surface and the end of the dive, especially in deep dives. In the present study, we examined the decision time in emperor penguins under two different conditions: during foraging trips at sea and during dives at an artificial isolated dive hole. It was found that there was an upper limit for the decision-to-return time irrespective of dive depth in birds diving at sea. However, in a large proportion of dives at the isolated dive hole, the decision-to-return time exceeded the upper limit at sea. This difference between the decision times in dives at sea versus the isolated dive hole was accounted for by a difference in stroke rate. The stroke rates were much lower in dives at the isolated hole and were inversely correlated with the upper limit of decision times in individual birds. Unlike the decision time to start returning, the cumulative number of strokes at the decision time fell within a similar range in the two experiments. This finding suggests that the number of strokes, but not elapsed time, constrained the decision of emperor penguins to return to the surface. While the decision to return and to end a dive may be determined by a variety of ecological, behavioral and physiological factors, the upper limit to that decision time may be related to cumulative muscle workload.

Spragg, RG, Ponganis PJ, Marsh JJ, Rau GA, Bernhard W.  2004.  Surfactant from diving aquatic mammals. Journal of Applied Physiology. 96:1626-1632.   10.1152/japplphysiol.00898.2003   AbstractWebsite

Diving mammals that descend to depths of 50 - 70 m or greater fully collapse the gas exchanging portions of their lungs and then reexpand these areas with ascent. To investigate whether these animals may have evolved a uniquely developed surfactant system to facilitate repetitive alveolar collapse and expansion, we have analyzed surfactant in bronchoalveolar lavage fluid (BAL) obtained from nine pinnipeds and from pigs and humans. In contrast to BAL from terrestrial mammals, BAL from pinnipeds has a higher concentration of phospholipid and relatively more fluidic phosphatidylcholine molecular species, perhaps to facilitate rapid spreading during alveolar reexpansion. Normalized concentrations of hydrophobic surfactant proteins B and C were not significantly different among pinnipeds and terrestrial mammals by immunologic assay, but separation of proteins by gel electrophoresis indicated a greater content of surfactant protein B in elephant seal surfactant than in human surfactant. Remarkably, surfactant from the deepest diving pinnipeds produced moderately elevated in vitro minimum surface tension measurements, a finding not explained by the presence of protein or neutral lipid inhibitors. Further study of the composition and function of pinniped surfactants may contribute to the design of optimized therapeutic surfactants.

Stockard, TK, Levenson DH, Berg L, Fransioli JR, Baranov EA, Ponganis PJ.  2007.  Blood oxygen depletion during rest-associated apneas of northern elephant seals (Mirounga angustirostris). Journal of Experimental Biology. 210:2607-2617.   10.1242/jeb.008078   AbstractWebsite

Blood gases (P-O2, P-CO2, pH), oxygen content, hematocrit and hemoglobin concentration were measured during rest-associated apneas of nine juvenile northern elephant seals. In conjunction with blood volume determinations, these data were used to determine total blood oxygen stores, the rate and magnitude of blood O-2 depletion, the contribution of the blood O-2 store to apneic metabolic rate, and the egree of hypoxemia that occurs during these breath-holds. Mean body mass was 66 +/- 9.7 kg (+/- s.d.); blood volume was 196 +/- 20 ml kg(-1); and hemoglobin concentration was 23.5 +/- 1.5 g dl(-1). Rest apneas ranged in duration from 3.1 to 10.9 min. Arterial P-O2 declined exponentially during apnea, ranging between a maximum of 108 mmHg and a minimum of 18 mmHg after a 9.1 min breath-hold. Venous P-O2 values were indistinguishable from arterial values after the first minute of apnea; the lowest venous P-O2 recorded was 15 mmHg after a 7.8 min apnea. O-2 contents were also similar between the arterial and venous systems, declining linearly at rates of 2.3 and 2.0 ml O-2 dl(-1) min (-1), respectively, from mean initial values of 27.2 and 26.0 ml O-2 dl(-1). These blood O-2 depletion rates are approximately twice the reported values during forced submersion and are consistent with maintenance of previously measured high cardiac outputs during rest-associated breath-holds. During a typical 7-min apnea, seals consumed, on average, 56% of the initial blood O-2 store of 52 ml O-2 kg(-1); this contributed 4.2 ml O-2 kg(-1) min(-1) to total body metabolic rate during the breath-hold. Extreme hypoxemic tolerance in these seals was demonstrated by arterial P-O2 values during late apnea that were less than human thresholds for shallow-water blackout. Despite such low P-O2s, there was no evidence of significant anaerobic metabolism, as changes in blood pH were minimal and attributable to increased P-CO2. These findings and the previously reported lack of lactate accumulation during these breath- holds are consistent with the maintenance of aerobic metabolism even at low oxygen tensions during rest- associated apneas. Such hypoxemic tolerance is necessary in order to allow dissociation of O-2 from hemoglobin and provide effective utilization of the blood O-2 store.

T
Tift, MS, Huckstadt LA, McDonald BI, Thorson PH, Ponganis PJ.  2017.  Flipper stroke rate and venous oxygen levels in free-ranging California sea lions. Journal of Experimental Biology. 220:1533-1540.   10.1242/jeb.152314   AbstractWebsite

The depletion rate of the blood oxygen store, development of hypoxemia and dive capacity are dependent on the distribution and rate of blood oxygen delivery to tissues while diving. Although blood oxygen extraction by working muscle would increase the blood oxygen depletion rate in a swimming animal, there is little information on the relationship between muscle workload and blood oxygen depletion during dives. Therefore, we examined flipper stroke rate, a proxy of muscle workload, and posterior vena cava oxygen profiles in four adult female California sea lions (Zalophus californianus) during foraging trips at sea. Flipper stroke rate analysis revealed that sea lions minimized muscle metabolism with a stroke-glide strategy when diving, and exhibited prolonged glides during the descent of deeper dives (>100 m). During the descent phase of these deep dives, 55 +/- 21% of descent was spent gliding, with the longest glides lasting over 160 s and covering a vertical distance of 340 m. Animals also consistently glided to the surface from 15 to 25 m depth during these deeper dives. Venous hemoglobin saturation (SO2) profiles were highly variable throughout dives, with values occasionally increasing during shallow dives. The relationship between SO2 and flipper stroke rate was weak during deeper dives, while this relationship was stronger during shallow dives. We conclude that (1) the depletion of oxygen in the posterior vena cava in deep-diving sea lions is not dependent on stroke effort, and (2) stroke-glide patterns during dives contribute to a reduction of muscle metabolic rate.

Tift, MS, Ponganis PJ, Crocker DE.  2014.  Elevated carboxyhemoglobin in a marine mammal, the northern elephant seal. Journal of Experimental Biology. 217:1752-1757.   10.1242/jeb.100677   AbstractWebsite

Low concentrations of endogenous carbon monoxide (CO), generated primarily through degradation of heme from hemeproteins, have been shown to maintain physiological function of organs and to exert cytoprotective effects. However, high concentrations of carboxyhemoglobin (COHb), formed by CO binding to hemoglobin, potentially prevent adequate O-2 delivery to tissues by lowering arterial O-2 content. Elevated heme-protein concentrations, as found in marine mammals, are likely associated with greater heme degradation, more endogenous CO production and, consequently, elevated COHb concentrations. Therefore, we measured COHb in elephant seals, a species with large blood volumes and elevated hemoglobin and myoglobin concentrations. The levels of COHb were positively related to the total hemoglobin concentration. The maximum COHb value was 10.4% of total hemoglobin concentration. The mean (+/- s.e.m.) value in adult seals was 8.7 +/- 0.3% (N=6), while juveniles and pups (with lower heme-protein contents) had lower mean COHb values of 7.6 +/- 0.2% and 7.1 +/- 0.3%, respectively (N=9 and N=9, respectively). Serial samples over several hours revealed little to no fluctuation in COHb values. This consistent elevation in COHb suggests that the magnitude and/ or rate of heme-protein turnover is much higher than in terrestrial mammals. The maximum COHb values from this study decrease total body O-2 stores by 7%, thereby reducing the calculated aerobic dive limit for this species. However, the constant presence of elevated CO in blood may also protect against potential ischemia-reperfusion injury associated with the extreme breath-holds of elephant seals. We suggest the elephant seal represents an ideal model for understanding the potential cytoprotective effects, mechanisms of action and evolutionary adaptation associated with chronically elevated concentrations of endogenously produced CO.

Tift, MS, Huckstadt LA, Ponganis PJ.  2018.  Anterior vena caval oxygen profiles in a deep-diving California sea lion: arteriovenous shunts, a central venous oxygen store and oxygenation during lung collapse. Journal of Experimental Biology. 221   10.1242/jeb.163428   AbstractWebsite

Deep-diving California sea lions (Zalophus californianus) can maintain arterial hemoglobin saturation (S-O2) above 90% despite lung collapse (lack of gas exchange) and extremely low posterior vena caval S-O2 in the middle of the dive. We investigated anterior vena caval P-O2 and S-O2 during dives of an adult female sea lion to investigate two hypotheses: (1) posterior vena caval S-O2 is not representative of the entire venous oxygen store and (2) a well-oxygenated (arterialized) central venous oxygen reservoir might account for maintenance of arterial S-O2 during lung collapse. During deep dives, initial anterior vena caval S-O2 was elevated at 83.6 +/- 8.4% (n = 102), presumably owing to arteriovenous shunting. It remained high until the bottom phase of the dive and then decreased during ascent, whereas previously determined posterior vena caval S-O2 declined during descent and then often increased during ascent. These divergent patterns confirmed that posterior vena caval S-O2 was not representative of the entire venous oxygen store. Prior to and early during descent of deep dives, the high S-O2 values of both the anterior and posterior venae cavae may enhance arterialization of a central venous oxygen store. However, anterior vena caval S-O2 values at depths beyond lung collapse reached levels as low as 40%, making it unlikely that even a completely arterialized central venous oxygen store could account for maintenance of high arterial S-O2. These findings suggest that maintenance of high arterial S-O2 during deep dives is due to persistence of some gas exchange at depths beyond presumed lung collapse.

V
Van Dam, RP, Ponganis PJ, Ponganis KV, Levenson DH, Marshall G.  2002.  Stroke frequencies of emperor penguins diving under sea ice. Journal of Experimental Biology. 205:3769-3774. AbstractWebsite

During diving, intermittent swim stroke patterns, ranging from burst/coast locomotion to prolonged gliding, represent potential energy conservation mechanisms that could extend the duration of aerobic metabolism and, hence, increase the aerobic dive limit (ADL, dive duration associated with onset of lactate accumulation). A 5.6 min ADL for emperor penguins had been previously determined with lactate measurements after dives of <50 m depth. In order to assess locomotory patterns during such dives, longitudinal acceleration was measured with an attached accelerometer in 44 dives of seven adult birds diving from an isolated dive hole in the sea ice of McMurdo Sound, Antarctica. Detection of wing strokes in processed accelerometer data was verified in selected birds with analysis of simultaneous Crittercam underwater video footage. Mean dive duration of birds equipped with the accelerometer and a time-depth recorder (TDR) was 5.7+/-2.2 min; 48% of these dives were greater than the measured 5.6 min ADL (ADL(M)). Highest stroke frequencies (0.92+/-0.31Hz, N=981) occurred during the initial descent to 12 m depth. Swimming effort was reduced to a mean stroke frequency <0.70 Hz during other phases of the dive (while traveling below 12 m depth, during foraging ascents/descents to and from the sub-ice surface, and during final ascents to exit). The longest stroke interval (8.6 s) occurred during a feeding excursion to the undersurface of the ice. In dives >ADL(M), mean stroke frequency during travel segments was significantly less than that in dives 10 s) periods of prolonged gliding during these shallow (<60 m) foraging dives. However, a stroke/glide pattern was evident with more than 50% of strokes associated with a stroke interval >1.6 s, and with lower stroke frequency associated with increased dive duration.

W
Watanabe, S, Sato K, Ponganis PJ.  2012.  Activity time budget during foraging trips of emperor penguins. Plos One. 7   10.1371/journal.pone.0050357   AbstractWebsite

We developed an automated method using depth and one axis of body acceleration data recorded by animal-borne data loggers to identify activities of penguins over long-term deployments. Using this technique, we evaluated the activity time budget of emperor penguins (n = 10) both in water and on sea ice during foraging trips in chick-rearing season. During the foraging trips, emperor penguins alternated dive bouts (4.8 +/- 4.5 h) and rest periods on sea ice (2.5 +/- 2.3 h). After recorder deployment and release near the colony, the birds spent 17.9 +/- 8.4% of their time traveling until they reached the ice edge. Once at the ice edge, they stayed there more than 4 hours before the first dive. After the first dive, the mean proportions of time spent on the ice and in water were 30.8 +/- 7.4% and 69.2 +/- 7.4%, respectively. When in the water, they spent 67.9 +/- 3.1% of time making dives deeper than 5 m. Dive activity had no typical diurnal pattern for individual birds. While in the water between dives, the birds had short resting periods (1.2 +/- 1.7 min) and periods of swimming at depths shallower than 5 m (0.25 +/- 0.38 min). When the birds were on the ice, they primarily used time for resting (90.3 +/- 4.1% of time) and spent only 9.7 +/- 4.1% of time traveling. Thus, it appears that, during foraging trips at sea, emperor penguins traveled during dives >5 m depth, and that sea ice was primarily used for resting. Sea ice probably provides refuge from natural predators such as leopard seals. We also suggest that 24 hours of sunlight and the cycling of dive bouts with short rest periods on sea ice allow emperor penguins to dive continuously throughout the day during foraging trips to sea.

Williams, CL, Sato K, Ponganis PJ.  2019.  Activity, not submergence, explains diving heart rates of captive loggerhead sea turtles. Journal of Experimental Biology. 222   10.1242/jeb.200824   AbstractWebsite

Marine turtles spend their life at sea and can rest on the seafloor for hours. As air-breathers, the breath-hold capacity of marine turtles is a function of oxygen (O-2) stores, O-2 consumption during dives and hypoxia tolerance. However, some physiological adaptations to diving observed in mammals are absent in marine turtles. This study examined cardiovascular responses in loggerhead sea turtles, which have even fewer adaptations to diving than other marine turtles, but can dive for extended durations. Heart rates (f(H)) of eight undisturbed loggerhead turtles in shallow tanks were measured using self-contained ECG data loggers under five conditions: spontaneous dives, resting motionless on the tank bottom, resting in shallow water with their head out of water, feeding on squid, and swimming at the surface between dives. There was no significant difference between resting f(H) while resting on the bottom of the tank, diving or resting in shallow water with their head out of water. f(H) rose as soon as turtles began to move and was highest between dives when turtles were swimming at the surface. These results suggest cardiovascular responses in captive loggerhead turtles are driven by activity and apneic f(H) is not reduced by submergence under these conditions.

Williams, CL, Meir JU, Ponganis PJ.  2011.  What triggers the aerobic dive limit? Patterns of muscle oxygen depletion during dives of emperor penguins Journal of Experimental Biology. 214:1802-1812.   10.1242/jeb.052233   AbstractWebsite

The physiological basis of the aerobic dive limit (ADL), the dive duration associated with the onset of post-dive blood lactate elevation, is hypothesized to be depletion of the muscle oxygen (O(2)) store. A dual wavelength near-infrared spectrophotometer was developed and used to measure myoglobin (Mb) O(2) saturation levels in the locomotory muscle during dives of emperor penguins (Aptenodytes forsteri). Two distinct patterns of muscle O(2) depletion were observed. Type A dives had a monotonic decline, and, in dives near the ADL, the muscle O(2) store was almost completely depleted. This pattern of Mb desaturation was consistent with lack of muscle blood flow and supports the hypothesis that the onset of post-dive blood lactate accumulation is secondary to muscle O(2) depletion during dives. The mean type A Mb desaturation rate allowed for calculation of a mean muscle O(2) consumption of 12.4. ml O(2). kg(-1) muscle. min(-1), based on a Mb concentration of 6.4. g 100. g(-1) muscle. Type B desaturation patterns demonstrated a more gradual decline, often reaching a mid-dive plateau in Mb desaturation. This mid-dive plateau suggests maintenance of some muscle perfusion during these dives. At the end of type B dives, Mb desaturation rate increased and, in dives beyond the ADL, Mb saturation often reached near 0%. Thus, although different physiological strategies may be used during emperor penguin diving, both Mb desaturation patterns support the hypothesis that the onset of post-dive lactate accumulation is secondary to muscle O(2) store depletion.

Williams, CL, Sato K, Shiomi K, Ponganis PJ.  2012.  Muscle energy stores and stroke rates of emperor penguins: implications for muscle metabolism and dive performance. Physiological and Biochemical Zoology. 85:120-133.   10.1086/664698   AbstractWebsite

In diving birds and mammals, bradycardia and peripheral vasoconstriction potentially isolate muscle from the circulation. During complete ischemia, ATP production is dependent on the size of the myoglobin oxygen (O-2) store and the concentrations of phosphocreatine (PCr) and glycogen (Gly). Therefore, we measured PCr and Gly concentrations in the primary underwater locomotory muscle of emperor penguin and modeled the depletion of muscle O-2 and those energy stores under conditions of complete ischemia and a previously determined muscle metabolic rate. We also analyzed stroke rate to assess muscle workload variation during dives and evaluate potential limitations on the model. Measured PCr and Gly concentrations, 20.8 and 54.6 mmol kg(-1), respectively, were similar to published values for nondiving animals. The model demonstrated that PCr and Gly provide a large anaerobic energy store, even for dives longer than 20 min. Stroke rate varied throughout the dive profile, indicating muscle workload was not constant during dives as was assumed in the model. The stroke rate during the first 30 s of dives increased with increased dive depth. In extremely long dives, lower overall stroke rates were observed. Although O-2 consumption and energy store depletion may vary during dives, the model demonstrated that PCr and Gly, even at concentrations typical of terrestrial birds and mammals, are a significant anaerobic energy store and can play an important role in the emperor penguin's ability to perform long dives.

Wright, AK, Ponganis KV, McDonald BI, Ponganis PJ.  2014.  Heart rates of emperor penguins diving at sea: implications for oxygen store management. Marine Ecology Progress Series. 496:85-98.   10.3354/meps10592   AbstractWebsite

Heart rate (f(H)) contributes to control of blood oxygen (O-2) depletion through regulation of the magnitude of pulmonary gas exchange and of peripheral blood flow in diving vertebrates such as penguins. Therefore, we measured H during foraging trip dives of emperor penguins Aptenodytes forsteri equipped with digital electrocardiogram (ECG) recorders and time depth recorders (TDRs). Median dive f(H) (total heartbeats/duration, 64 beats min(-1)) was higher than resting H (56 beats min(-1)) and was negatively related to dive duration. Median dive f(H) in dives greater than the 5.6 min aerobic dive limit (ADL; dive duration associated with the onset of a net accumulation of lactic acid above resting levels) was significantly less than the median dive f(H) of dives less than the ADL (58 vs. 66 beats min(-1)). f(H) profile patterns differed between shallow (<50 m) and deep dives (>250 m), with values usually declining to levels near resting f(H) in shallow, short-duration dives, and to levels as low as 10 beats min(-1) during the deepest segments of deep dives. The total number of heartbeats in a dive was variable in shallow dives and consistently high in deep dives. A true bradycardia (f(H) below resting levels) during segments of 31% of shallow and deep dives of emperor penguins is consistent with reliance on myoglobin-bound O-2 stores for aerobic muscle metabolism that is especially accentuated during the severe bradycardias of deep dives. Although f(H) is low during the deepest segments of deep dives, the total number and distribution of heartbeats in deep, long dives suggest that pulmonary gas exchange and peripheral blood flow primarily occur at shallow depths.

Z
Zenteno-Savin, T, Leger JS, Ponganis PJ.  2010.  Hypoxemic and ischemic tolerance in emperor penguins. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology. 152:18-23.   10.1016/j.cbpc.2010.02.007   AbstractWebsite

Oxygen store depletion and a diving bradycardia in emperor penguins (Aptenodytes forsteri) expose tissues to critical levels of hypoxemia and ischemia. To assess the prevention of re-perfusion injury and reactive oxygen species (ROS) damage in emperor penguins, superoxide radical production, lipid peroxidation (thiobarbituric acid reactive substances (TBARS)), and antioxidant enzyme activity profiles in biopsy samples from muscle and liver were determined and compared to those in the chicken and 8 species of flighted marine birds (non-divers and plunge divers). In muscle of emperor penguins, superoxide production and TBARS levels were not distinctly different from those in the other species; among the antioxidant enzymes, catalase (CAT) and glutathione-S-transferase (GST) activities were significantly elevated above all species. In the liver of emperor penguins, TBARS levels were not significantly different from other species; only CAT activity was significantly elevated, although GST and glutathione peroxidase (GPX) activities were 2-3 times higher than those in other species. The potential for ROS formation and lipid peroxidation is not reduced in the pectoral muscle or liver of the emperor penguin. Scavenging of hydrogen peroxide by CAT and the conjugation of glutathione with reactive intermediates and peroxides by GST and GPX appear to be important in the prevention of ROS damage and re-perfusion injury in these birds. (C) 2010 Elsevier Inc. All rights reserved.