Export 2 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S [T] U V W X Y Z   [Show ALL]
Ponganis, PJ, Van Dam RP, Knower T, Levenson DH.  2001.  Temperature regulation in emperor penguins foraging under sea ice. Comparative Biochemistry and Physiology a-Molecular and Integrative Physiology. 129:811-820.   10.1016/s1095-6433(01)00349-x   AbstractWebsite

Inferior vena caval (IVC) and anterior abdominal (AA) temperatures were recorded in seven emperor penguins (Aptenodytes foresteri) foraging under sea ice in order to evaluate the hypothesis that hypothermia-induced metabolic suppression might extend aerobic diving time. Diving durations ranged from 1 to 12.5 min, with 39% of dives greater than the measured aerobic dive limit of 5.6 min. Anterior abdominal temperature decreased progressively throughout dives, and partially returned to pre-dive values during surface intervals. The lowest AA temperature was 19 degreesC. However, mean AA temperatures during dives did not correlate with diving durations. In six of seven penguins, only minor fluctuations in IVC temperatures occurred during diving. These changes were often elevations in temperature. In the one exception, although IVC temperatures decreased, the reductions were less than those in the anterior abdomen and did not correlate with diving durations. Because of these findings, we consider it unlikely that regional hypothermia in emperor penguins leads to a significant reduction in oxygen consumption of the major organs within the abdominal core. Rather, temperature profiles during dives are consistent with a model of regional heterothermy with conservation of core temperature, peripheral vasoconstriction, and cooling of an outer body shell. (C) 2001 Elsevier Science Inc. All rights reserved.

Barber-Meyer, SM, Kooyman GL, Ponganis PJ.  2008.  Trends in western Ross Sea emperor penguin chick abundances and their relationships to climate. Antarctic Science. 20:3-11.   10.1017/s0954102007000673   AbstractWebsite

The emperor penguin (Aptenodytes forsteri) is extremely dependent on the extent and stability of sea ice, which may make the species particularly susceptible to environmental change. In order to appraise the stability of the emperor penguin populations at six colonies in the western Ross Sea, we used linear regression analysis to evaluate chick abundance trends (1983-2005) and Pearson's r correlation to assess their relation to two local and two large-scale climate variables. We detected only one significant abundance trend; the Cape Roget colony increased from 1983 to 1996 (n = 6). Higher coefficients of variation in chick abundances at smaller colonies (Cape Crozier, Beaufort Island, Franklin Island) suggest that such colonies occupy marginal habitat, and are more susceptible to environmental change. We determined chick abundance to be most often correlated with local Ross Sea climate variables (sea ice extent and sea surface temperature), but not in consistent patterns across the colonies. We propose that chick abundance is most impacted by fine scale sea ice extent and local weather events, which are best evaluated by on-site assessments. We did not find sufficient evidence to reject the hypothesis that the overall emperor penguin population in the Ross Sea was stable during this period.