Export 11 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D [E] F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Shiomi, K, Sato K, Mitamura H, Arai N, Naito Y, Ponganis PJ.  2008.  Effect of ocean current on the dead-reckoning estimation of 3-D dive paths of emperor penguins. Aquatic Biology. 3:265-270.   10.3354/ab00087   AbstractWebsite

The dead-reckoning technique is a useful method for obtaining 3-D movement data of aquatic animals. However, such positional data include an accumulative error. Understanding the source of the error is important for proper data interpretation. In order to determine whether ocean currents affect dive paths calculated by dead-reckoning, as has previously been hypothesized, we examined the directions of the estimated positions relative to the known real points (error direction) and the relationship between the error direction and the current direction. 3-D dive paths of emperor penguins Aptenodytes forsteri diving at isolated dive holes in eastern McMurdo Sound were reconstructed by dead-reckoning, and the net error and error direction were calculated. The net error correlated positively with the dive duration. The error directions were not distributed uniformly, and the mean error direction tended to be north of the starting point of dives. Because there was a southward-flowing current in eastern McMurdo Sound, the ocean current was likely to affect the calculated dive paths. Therefore, the method of error correction generally used, in which the net error divided by the dive duration is applied to each estimated position, is realistically appropriate, provided that the current does not change significantly during a dive.

Kooyman, GL, Ainley DG, Ballard G, Ponganis PJ.  2007.  Effects of giant icebergs on two emperor penguin colonies in the Ross Sea, Antarctica. Antarctic Science. 19:31-38.   10.1017/s0954102007000065   AbstractWebsite

The arrival in January 2001 in the south-west Ross Sea of two giant icebergs, C16 and Bl5A, subsequently had dramatic affects on two emperor penguin colonies. B15A collided with the north-west tongue of the Ross Ice Shelf at Cape Crozier, Ross Island, in the following months and destroyed the penguins' nesting habitat. The colony totally failed in 2001, and years after, with the icebergs still in place, exhibited reduced production that ranged from 0 to 40% of the 1201 chicks produced in 2000. At Beaufort Island, 70 km NW of Crozier, chick production declined to 6% of the 2000 count by 2004. Collisions with the Ross Ice Shelf at Cape Crozier caused incubating adults to be crushed, trapped in ravines, or to abandon the colony and, since 2001, to occupy poorer habitat. The icebergs separated Beaufort Island from the Ross Sea Polynya, formerly an easy route to feeding and wintering areas. This episode has provided a glimpse of events which have probably occurred infrequently since the West Antarctic Ice Sheet began to retreat 12 000 years ago. The results allow assessment of recovery rates for one colony decimated by both adult and chick mortality, and the other colony by adult abandonment and chick mortality.

Ponganis, PJ, McDonald BI, Tift MS, Gonzalez SC, DaValle B, Gliniecki RA, Stehman CC, Hauff N, Ruddick B, Howard R.  2017.  Effects of inhalational anesthesia on blood gases and pH in California sea lions. Marine Mammal Science. 33:726-737.   10.1111/mms.12388   AbstractWebsite

Despite the widespread use of inhalational anesthesia with spontaneous ventilation in many studies of otariid pinnipeds, the effects and risks of anesthetic-induced respiratory depression on blood gas and pH regulation are unknown in these animals. During such anesthesia in California sea lions (Zalophus californianus), blood gas and pH analyses of opportunistic blood samples revealed routine hypercarbia (highest P-CO2 = 128 mm Hg [17.1 kPa]), but adequate arterial oxygenation (P-O2 > 100 mm Hg [13.3 kPa] on 100% inspiratory oxygen). Respiratory acidosis (lowest pH = 7.05) was limited by the increased buffering capacity of sea lion blood. Amarkedly widened alveolar-to-arterial P-O2 difference was indicative of atelectasis and ventilation-perfusion mismatch in the lung secondary to hypoventilation during anesthesia. Despite the generally safe track record of this anesthetic regimen in the past, these findings demonstrate the value of high inspiratory O-2 concentrations and the necessity of constant vigilance and caution. In order to avoid hypoxemia, we emphasize the importance of late extubation or at least maintenance of mask ventilation on O-2 until anesthetic-induced respiratory depression is resolved. In this regard, whether for planned or emergency application, we also describe a simple, easily employed intubation technique with the Casper zalophoscope for sea lions.

Jobsis, PD, Ponganis PJ, Kooyman GL.  2001.  Effects of training on forced submersion responses in harbor seals. Journal of Experimental Biology. 204:3877-3885. AbstractWebsite

In several pinniped species, the heart rates observed during unrestrained dives are frequently higher than the severe bradycardias recorded during forced submersions. To examine other physiological components of the classic 'dive response' during such moderate bradycardias, a training protocol was developed to habituate harbor seals (Phoca vitulina) to short forced submersions. Significant changes were observed between physiological measurements made during naive and trained submersions (3-3.5min). Differences were found in measurements of heart rate during submersion (naive 18 +/-4.3 beats min(-1) versus trained 35 +/-3.4 beats min(-1)), muscle blood flow measured using laser-Doppler flowmetry (naive 1.8 +/-0.8 ml min(-1) 100 g(-1) versus trained 5.8 +/-3.9 ml min(-1) 100 g(-1)), change in venous P-O 2 (naive -0.44 +/-1.25 kPa versus trained -1.48 +/-0.76 kPa) and muscle deoxygenation rate (naive -0.67 +/-0.27 mvd s(-1) versus trained -0.51 +/-0.18 mvd s(-1), a relative measure of muscle oxygenation provided by the Vander Niroscope, where mvd are milli-vander units). In contrast to the naive situation, the post-submersion increase in plasma lactate levels was only rarely significant in trained seals. Resting eupneic (while breathing) heart rate and total oxygen consumption rates (measured in two seals) were not significantly different between the naive and trained states. This training protocol revealed that the higher heart rate and greater muscle blood flow in the trained seals were associated with a lower muscle deoxygenation rate, presumably secondary to greater extraction of blood O-2 during trained submersions. Supplementation of muscle oxygenation by blood O-2 delivery during diving would increase the rate of blood O-2 depletion but could prolong the duration of aerobic muscle metabolism during diving. This alteration of the dive response may increase the metabolic efficiency of diving.

Tift, MS, Ponganis PJ, Crocker DE.  2014.  Elevated carboxyhemoglobin in a marine mammal, the northern elephant seal. Journal of Experimental Biology. 217:1752-1757.   10.1242/jeb.100677   AbstractWebsite

Low concentrations of endogenous carbon monoxide (CO), generated primarily through degradation of heme from hemeproteins, have been shown to maintain physiological function of organs and to exert cytoprotective effects. However, high concentrations of carboxyhemoglobin (COHb), formed by CO binding to hemoglobin, potentially prevent adequate O-2 delivery to tissues by lowering arterial O-2 content. Elevated heme-protein concentrations, as found in marine mammals, are likely associated with greater heme degradation, more endogenous CO production and, consequently, elevated COHb concentrations. Therefore, we measured COHb in elephant seals, a species with large blood volumes and elevated hemoglobin and myoglobin concentrations. The levels of COHb were positively related to the total hemoglobin concentration. The maximum COHb value was 10.4% of total hemoglobin concentration. The mean (+/- s.e.m.) value in adult seals was 8.7 +/- 0.3% (N=6), while juveniles and pups (with lower heme-protein contents) had lower mean COHb values of 7.6 +/- 0.2% and 7.1 +/- 0.3%, respectively (N=9 and N=9, respectively). Serial samples over several hours revealed little to no fluctuation in COHb values. This consistent elevation in COHb suggests that the magnitude and/ or rate of heme-protein turnover is much higher than in terrestrial mammals. The maximum COHb values from this study decrease total body O-2 stores by 7%, thereby reducing the calculated aerobic dive limit for this species. However, the constant presence of elevated CO in blood may also protect against potential ischemia-reperfusion injury associated with the extreme breath-holds of elephant seals. We suggest the elephant seal represents an ideal model for understanding the potential cytoprotective effects, mechanisms of action and evolutionary adaptation associated with chronically elevated concentrations of endogenously produced CO.

Kooyman, GL, Ponganis PJ.  1994.  Emperor penguin oxygen consumption, heart rate and plasma lactate levels during graded swimming exercise. Journal of Experimental Biology. 195:199-209. AbstractWebsite

Oxygen consumption (V-O2), heart rate and blood chemistry were measured in four emperor penguins, Aptenodytes forsteri (Gray), during graded swimming exercise. The maximum V-O2, obtained, 52ml O-2 kg(-1) min(-1), was 7.8 times the measured resting V-O2 of 6.7 ml O-2 kg(-1) min(-1) and 9.1 times the predicted resting V-O2. As the swimming effort rose, a linear increase in surface and submerged heart rates (fH) occurred. The highest average maximum surface and submersion heart rates of any bird were 213 and 210 beats min(-1), respectively. No increase in plasma lactate concentrations occurred until V-O2 was greater than 25 ml O-2 kg(-1) min(-1). At the highest V-O2 values measured, plasma lactate concentration reached 9.4 mmol l(-1). In comparison with other animals of approximately the same mass, the aerobic capacity of the emperor penguin is less than those of the emu and dog but about the same as those of the seal, sea lion and domestic goat. For aquatic animals, a low aerobic capacity seems to be consistent with the needs of parsimonious oxygen utilization while breath-holding.

Sato, K, Ponganis PJ, Habara Y, Naito Y.  2005.  Emperor penguins adjust swim speed according to the above-water height of ice holes through which they exit. Journal of Experimental Biology. 208:2549-2554.   10.1242/jeb.01665   AbstractWebsite

Emperor penguins leap from the water onto the sea ice. Their ability to reach above-water height depends critically on initial vertical speed of their leaping, assuming that the kinetic energy is converted to gravitational potential energy. We deliberately changed the above-water heights of ice hole exits, in order to examine whether penguins adjusted swim speed in accordance with the above-water height of the ice. Penguins were maintained in a corral on the fast ice in Antarctica, and voluntarily dived through two artificial ice holes. Data loggers were deployed on the penguins to monitor under water behavior. Nine instrumented penguins performed 386 leaps from the holes during experiments. The maximum swim speeds within 1 s before the exits through the holes correlated significantly with the above-water height of the holes. Penguins adopted higher speed to exit through the higher holes than through the lower holes. Speeds of some failed exits were lower than the theoretical minimum values to reach a given height. Penguins failed to exit onto the sea ice in a total of 37 of the trials. There was no preference to use lower holes after they failed to exit through the higher holes. Rather, swim speed was increased for subsequent attempts after failed leaps. These data demonstrated that penguins apparently recognized the above-water height of holes and adopted speeds greater than the minimal vertical speeds to reach the exit height. It is likely, especially in the case of higher holes (>40 cm), that they chose minimum speeds to exit through the holes to avoid excess energy for swimming before leaping. However, some exceptionally high speeds were recorded when they directly exited onto the ice from lower depths. In those cases, birds could increase swim speed without strokes for the final seconds before exit and they only increased the steepness of their body angles as they surfaced, which indicates that the speed required for leaps by emperor penguins were aided by buoyancy, and that penguins can sometimes exit through the ice holes without any stroking effort before leaping.

Nagy, KA, Kooyman GL, Ponganis PJ.  2001.  Energetic cost of foraging in free-diving emperor penguins. Physiological and Biochemical Zoology. 74:541-547.   10.1086/322165   AbstractWebsite

Hypothesizing that emperor penguins (Aptenodytes forsteri) would have higher daily energy expenditures when foraging for their food than when being hand-fed and that the increased expenditure could represent their foraging cost, we measured field metabolic rates (FMR; using doubly labeled water) over 4-d periods when 10 penguins either foraged under sea ice or were not allowed to dive but were fed fish by hand. Surprisingly, penguins did not have higher rates of energy expenditure when they dove and captured their own food than when they did not forage but were given food. Analysis of time-activity and energy budgets indicated that FMR was about 1.7 x BMR (basal metabolic rate) during the 12 h d(-1) that penguins were lying on sea ice. During the remaining 12 h d(-1), which we termed their "foraging period" of the day, the birds were alert and active (standing, preening, walking, and either free diving or being hand-fed), and their FMR was about 4.1 x BMR. This is the lowest cost of foraging estimated to date among the eight penguin species studied. The calculated aerobic diving limit (ADL(C)), determined with the foraging period metabolic rate of 4.1 x BMR and known O-2 stores, was only 2.6 min, which is far less than the 6-min ADL previously measured with postdive lactate analyses in emperors diving under similar conditions. This indicates that calculating ADL(C) from an at-sea or foraging-period metabolic rate in penguins is not appropriate. The relatively low foraging cost for emperor penguins contributes to their relatively low total daily FMR (2.9 x BMR). The allometric relationship for FMR in eight penguin species, including the smallest and largest living representatives, is kJ d(-1) = 1,185 kg(0.705).

Ancel, A, Starke LN, Ponganis PJ, Van Dam R, Kooyman GL.  2000.  Energetics of surface swimming in Brandt's cormorants (Phalacrocorax penicillatus Brandt). Journal of Experimental Biology. 203:3727-3731. AbstractWebsite

The energy requirements of Brandt's cormorants (Phalacrocorax penicillatus) during surface swimming were measured in birds swimming under a metabolic chamber in a water flume. From the oxygen consumption recordings, we extrapolated the metabolic rate and cost of transport at water speeds ranging from 0 to 1.3 ms(-1). In still water, the birds' mean mass-specific rate of oxygen consumption ((V)over dot(O2),) while floating at the surface was 20.2ml O-2 min(-1) kg(-1), 2.1 times the predicted resting metabolic rate. During steady-state voluntary swimming against a how, their Po, increased with water speed, reaching 74 mi O-2 min(-1) kg(-1) at 1.3 ms(-1), which corresponded to an increase in metabolic rate from 11 to 25 W kg(-1). The cost of transport decreased,vith swimming velocity, approaching a minimum of 19 J kg(-1) m(-1) for a swimming speed of 1.3 m s(-1) Surface swimming in the cormorant costs approximately 18% less than sub-surface swimming. This confirms similar findings in tufted ducks (Aythya fuligula) and supports the hypothesis that increased energy requirements are necessary in these bird diving to overcome buoyancy and heat submergence.

Barber-Meyer, SM, Kooyman GL, Ponganis PJ.  2007.  Estimating the relative abundance of emperor penguins at inaccessible colonies using satellite imagery. Polar Biology. 30:1565-1570.   10.1007/s00300-007-0317-8   AbstractWebsite

Emperor penguin (Aptenodytes forsteri) populations are useful environmental indicators due to the bird's extreme reliance on sea ice. We used remote sensing technology to estimate relative adult bird abundance at two inaccessible emperor penguin colonies in the Ross Sea, Antarctica. We performed supervised classification of 12 panchromatic satellite images of the seven known Ross Sea colonies. We used regression to predict adult bird counts at the inaccessible colonies by relating the number of pixels classified as "penguin" in the satellite images of the accessible colonies to corresponding known adult bird counts from aerial photographs or ground counts. While our analysis was hampered by excessive guano and shadows, we used satellite imagery to differentiate between relatively small (< 3,000 adult birds) and larger colonies (> 5,000 adult birds). Remote sensing technology is logistically less intense and less costly than aerial or ground censuses when the objective is to document penguin presence and/or large emperor penguin population changes (e.g., catastrophic changes). Improvements expected soon in the resolution of the satellite images should allow for more accurate abundance estimates.

Meir, JU, Champagne CD, Costa DP, Williams CL, Ponganis PJ.  2009.  Extreme hypoxemic tolerance and blood oxygen depletion in diving elephant seals. American Journal of Physiology-Regulatory Integrative and Comparative Physiology. 297:R927-R939.   10.1152/ajpregu.00247.2009   AbstractWebsite

Meir JU, Champagne CD, Costa DP, Williams CL, Ponganis PJ. Extreme hypoxemic tolerance and blood oxygen depletion in diving elephant seals. Am J Physiol Regul Integr Comp Physiol 297: R927-R939, 2009. First published July 29, 2009; doi: 10.1152/ajpregu.00247.2009.-Species that maintain aerobic metabolism when the oxygen (O(2)) supply is limited represent ideal models to examine the mechanisms underlying tolerance to hypoxia. The repetitive, long dives of northern elephant seals (Mirounga angustirostris) have remained a physiological enigma as O(2) stores appear inadequate to maintain aerobic metabolism. We evaluated hypoxemic tolerance and blood O(2) depletion by 1) measuring arterial and venous O(2) partial pressure (PO(2)) during dives with a PO(2)/temperature recorder on elephant seals, 2) characterizing the O(2) hemoglobin (O(2)-Hb) dissociation curve of this species, 3) applying the dissociation curve to PO(2) profiles to obtain %Hb saturation (SO(2)), and 4) calculating blood O(2) store depletion during diving. Optimization of O(2) stores was achieved by high venous O(2) loading and almost complete depletion of blood O(2) stores during dives, with net O(2) content depletion values up to 91% (arterial) and 100% (venous). In routine dives (>10 min) Pv(O2) and Pa(O2) values reached 2-10 and 12-23 mmHg, respectively. This corresponds to SO(2) of 1-26% and O(2) contents of 0.3 (venous) and 2.7 ml O(2)/dl blood (arterial), demonstrating remarkable hypoxemic tolerance as PaO(2) is nearly equivalent to the arterial hypoxemic threshold of seals. The contribution of the blood O(2) store alone to metabolic rate was nearly equivalent to resting metabolic rate, and mean temperature remained near 37 degrees C. These data suggest that elephant seals routinely tolerate extreme hypoxemia during dives to completely utilize the blood O(2) store and maximize aerobic dive duration.