Export 7 results:
Sort by: Author [ Title  (Asc)] Type Year
[A] B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Watanabe, S, Sato K, Ponganis PJ.  2012.  Activity time budget during foraging trips of emperor penguins. Plos One. 7   10.1371/journal.pone.0050357   AbstractWebsite

We developed an automated method using depth and one axis of body acceleration data recorded by animal-borne data loggers to identify activities of penguins over long-term deployments. Using this technique, we evaluated the activity time budget of emperor penguins (n = 10) both in water and on sea ice during foraging trips in chick-rearing season. During the foraging trips, emperor penguins alternated dive bouts (4.8 +/- 4.5 h) and rest periods on sea ice (2.5 +/- 2.3 h). After recorder deployment and release near the colony, the birds spent 17.9 +/- 8.4% of their time traveling until they reached the ice edge. Once at the ice edge, they stayed there more than 4 hours before the first dive. After the first dive, the mean proportions of time spent on the ice and in water were 30.8 +/- 7.4% and 69.2 +/- 7.4%, respectively. When in the water, they spent 67.9 +/- 3.1% of time making dives deeper than 5 m. Dive activity had no typical diurnal pattern for individual birds. While in the water between dives, the birds had short resting periods (1.2 +/- 1.7 min) and periods of swimming at depths shallower than 5 m (0.25 +/- 0.38 min). When the birds were on the ice, they primarily used time for resting (90.3 +/- 4.1% of time) and spent only 9.7 +/- 4.1% of time traveling. Thus, it appears that, during foraging trips at sea, emperor penguins traveled during dives >5 m depth, and that sea ice was primarily used for resting. Sea ice probably provides refuge from natural predators such as leopard seals. We also suggest that 24 hours of sunlight and the cycling of dive bouts with short rest periods on sea ice allow emperor penguins to dive continuously throughout the day during foraging trips to sea.

Ponganis, PJ, Kooyman GL, Baranov EA, Thorson PH, Stewart BS.  1997.  The aerobic submersion limit of Baikal seals, Phoca sibirica. Canadian Journal of Zoology-Revue Canadienne De Zoologie. 75:1323-1327.   10.1139/z97-756   AbstractWebsite

An aerobic dive limit (ADL), the diving duration beyond which postdive lactate concentration increases above the resting level, has been estimated theoretically for many species. Such calculations have been based on an oxygen store/diving metabolic rate (MR) equation. Until now, an ADL has been determined empirically from measurements of blood lactate concentration only in the Weddell seal, Leptonychotes weddellii. We measured post-submergence plasma lactate concentrations during spontaneous voluntary submersions of three captive adult Baikal seals (Phoca sibirica). Two-phase regression analysis revealed a transition in the lactate concentration - submersion duration relationship after the animal had been diving for 15 min. Data collected in prior studies on oxygen stores and submersion metabolic rates of Baikal seals yielded a calculated aerobic limit of 16 min. As in Weddell seals, the empirically determined aerobic limit was very similar to the theoretical limit. Furthermore, most diving durations recorded during recent studies of free-ranging Baikal seals are under this limit. These data support the concept of an ADL and its estimation by means of an oxygen store/diving MR calculation.

Knower Stockard, T, Heil J, Meir JU, Sato K, Ponganis KV, Ponganis PJ.  2005.  Air sac P-O2 and oxygen depletion during dives of emperor penguins. Journal of Experimental Biology. 208:2973-2980.   10.1242/jeb.01687   AbstractWebsite

In order to determine the rate and magnitude of respiratory O-2 depletion during dives of emperor penguins (Aptenodytes forsteri), air sac O-2 partial pressure (PO2) was recorded in 73 dives of four birds at an isolated dive hole. These results were evaluated with respect to hypoxic tolerance, the aerobic dive limit (ADL; dive duration beyond which there is post-dive lactate accumulation) and previously measured field metabolic rates (FMRs). 55% of dives were greater in duration than the previously measured 5.6-min ADL. P-O2 and depth profiles revealed compression hyperoxia and gradual O-2 depletion during dives. 42% of final P(O2)s during the dives (recorded during the last 15 s of ascent) were < 20 mmHg (< 2.7 kPa). Assuming that the measured air sac P-O2 is representative of the entire respiratory system, this implies remarkable hypoxic tolerance in emperors. In dives of durations greater than the ADL, the calculated end-of-dive air sac O-2 fraction was < 4%. The respiratory O-2 store depletion rate of an entire dive, based on the change in O-2 fraction during a dive and previously measured diving respiratory volume, ranged from I to 5 ml O-2 kg(-1) min(-1) and decreased exponentially with diving duration. The mean value, 2.1 +/- 0.8 ml O-2 kg(-1) min(-1), was (1) 19-42% of previously measured respiratory O-2 depletion rates during forced submersions and simulated dives, (2) approximately one-third of the predicted total body resting metabolic rate and (3) approximately 10% of the measured FMR. These findings are consistent with a low total body metabolic rate during the dive.

Ponganis, PJ, Gentry RL, Ponganis EP, Ponganis KV.  1992.  Analysis of swim velocities during deep and shallow dives of two northern fur seals, Callorhinus ursinus. Marine Mammal Science. 8:69-75.   10.1111/j.1748-7692.1992.tb00126.x   AbstractWebsite

Swim velocities at 15-sec intervals and maximum depth per dive were recorded by microprocessor units on two "mixed diver" adult female northern fur seals during summer foraging trips. These records allowed comparison of swim velocities of deep (> 75 m) and shallow (< 75 m) dives. Deep dives averaged 120 m depth and 3 min duration; shallow dives averaged 30 m and 1.2 min. Mean swim velocities on deep dives were 1.8 and 1.5 m/ sec for the two animals; mean swim velocities on shallow dives were 1.5 and 1.2 m/sec. The number of minutes per hour spent diving during the deep and shallow dive patterns were 11 and 27 min, respectively. Swim velocity, and hence, relative metabolic rate, did not account for the differences in dive durations between deep and shallow dives. The long surface durations associated with deep dives, and estimates of metabolic rates for the observed swim velocities, suggest that deep dives involve significant anaerobic metabolism.

Ponganis, PJ, Gentry RL, Ponganis EP, Ponganis K.  1989.  Analysis of swimming velocity in deep and shallow dives of two northern fur seals, Callorhinus ursinus. Proceedings of the Eighth Biennial Conference on the Biology of Marine Mammals. , Pacific Grove, Calif. Abstract
Ponganis, PJ, Stockard TK.  2007.  The Antarctic toothfish: how common a prey for Weddell seals? Antarctic Science. 19:441-442.   10.1017/s0954102007000715   AbstractWebsite

The Antarctic toothfish (Dissostichus mawsoni Norman) has been considered an occasional large prey item of the Weddell seal (Leptonychotes weddellii Lesson) (Kooyman 1967, Calhaem & Christoffel 1969, Testa et al. 1985, Castellini et al. 1992, Davis et al. 1999, Fuiman et al. 2002). The seal's most common prey is the Antarctic silverfish (Pleuragramma antarcticum Boulenger) as well as benthic and sub-ice fish, cephalopods, and crustaceans (Dearborn 1965, Green & Burton 1987, Plotz 1987, Plotz et al. 1991, Castellini et al. 1992, Burns et al. 1998).

Tift, MS, Huckstadt LA, Ponganis PJ.  2018.  Anterior vena caval oxygen profiles in a deep-diving California sea lion: arteriovenous shunts, a central venous oxygen store and oxygenation during lung collapse. Journal of Experimental Biology. 221   10.1242/jeb.163428   AbstractWebsite

Deep-diving California sea lions (Zalophus californianus) can maintain arterial hemoglobin saturation (S-O2) above 90% despite lung collapse (lack of gas exchange) and extremely low posterior vena caval S-O2 in the middle of the dive. We investigated anterior vena caval P-O2 and S-O2 during dives of an adult female sea lion to investigate two hypotheses: (1) posterior vena caval S-O2 is not representative of the entire venous oxygen store and (2) a well-oxygenated (arterialized) central venous oxygen reservoir might account for maintenance of arterial S-O2 during lung collapse. During deep dives, initial anterior vena caval S-O2 was elevated at 83.6 +/- 8.4% (n = 102), presumably owing to arteriovenous shunting. It remained high until the bottom phase of the dive and then decreased during ascent, whereas previously determined posterior vena caval S-O2 declined during descent and then often increased during ascent. These divergent patterns confirmed that posterior vena caval S-O2 was not representative of the entire venous oxygen store. Prior to and early during descent of deep dives, the high S-O2 values of both the anterior and posterior venae cavae may enhance arterialization of a central venous oxygen store. However, anterior vena caval S-O2 values at depths beyond lung collapse reached levels as low as 40%, making it unlikely that even a completely arterialized central venous oxygen store could account for maintenance of high arterial S-O2. These findings suggest that maintenance of high arterial S-O2 during deep dives is due to persistence of some gas exchange at depths beyond presumed lung collapse.