Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2010
Sato, K, Shiomi K, Watanabe Y, Watanuki Y, Takahashi A, Ponganis PJ.  2010.  Scaling of swim speed and stroke frequency in geometrically similar penguins: they swim optimally to minimize cost of transport. Proceedings of the Royal Society B-Biological Sciences. 277:707-714.   10.1098/rspb.2009.1515   AbstractWebsite

It has been predicted that geometrically similar animals would swim at the same speed with stroke frequency scaling with mass(-1/3). In the present study, morphological and behavioural data obtained from free-ranging penguins (seven species) were compared. Morphological measurements support the geometrical similarity. However, cruising speeds of 1.8-2.3 m s(-1) were significantly related to mass(0.08) and stroke frequencies were proportional to mass(-0.29). These scaling relationships do not agree with the previous predictions for geometrically similar animals. We propose a theoretical model, considering metabolic cost, work against mechanical forces (drag and buoyancy), pitch angle and dive depth. This new model predicts that: (i) the optimal swim speed, which minimizes the energy cost of transport, is proportional to (basal metabolic rate/drag)(1/3) independent of buoyancy, pitch angle and dive depth; (ii) the optimal speed is related to mass(0.05); and (iii) stroke frequency is proportional to mass(-0.28). The observed scaling relationships of penguins support these predictions, which suggest that breath-hold divers swam optimally to minimize the cost of transport, including mechanical and metabolic energy during dive.

2001
Ponganis, PJ, Van Dam RP, Knower T, Levenson DH.  2001.  Temperature regulation in emperor penguins foraging under sea ice. Comparative Biochemistry and Physiology a-Molecular and Integrative Physiology. 129:811-820.   10.1016/s1095-6433(01)00349-x   AbstractWebsite

Inferior vena caval (IVC) and anterior abdominal (AA) temperatures were recorded in seven emperor penguins (Aptenodytes foresteri) foraging under sea ice in order to evaluate the hypothesis that hypothermia-induced metabolic suppression might extend aerobic diving time. Diving durations ranged from 1 to 12.5 min, with 39% of dives greater than the measured aerobic dive limit of 5.6 min. Anterior abdominal temperature decreased progressively throughout dives, and partially returned to pre-dive values during surface intervals. The lowest AA temperature was 19 degreesC. However, mean AA temperatures during dives did not correlate with diving durations. In six of seven penguins, only minor fluctuations in IVC temperatures occurred during diving. These changes were often elevations in temperature. In the one exception, although IVC temperatures decreased, the reductions were less than those in the anterior abdomen and did not correlate with diving durations. Because of these findings, we consider it unlikely that regional hypothermia in emperor penguins leads to a significant reduction in oxygen consumption of the major organs within the abdominal core. Rather, temperature profiles during dives are consistent with a model of regional heterothermy with conservation of core temperature, peripheral vasoconstriction, and cooling of an outer body shell. (C) 2001 Elsevier Science Inc. All rights reserved.

2000
Ancel, A, Starke LN, Ponganis PJ, Van Dam R, Kooyman GL.  2000.  Energetics of surface swimming in Brandt's cormorants (Phalacrocorax penicillatus Brandt). Journal of Experimental Biology. 203:3727-3731. AbstractWebsite

The energy requirements of Brandt's cormorants (Phalacrocorax penicillatus) during surface swimming were measured in birds swimming under a metabolic chamber in a water flume. From the oxygen consumption recordings, we extrapolated the metabolic rate and cost of transport at water speeds ranging from 0 to 1.3 ms(-1). In still water, the birds' mean mass-specific rate of oxygen consumption ((V)over dot(O2),) while floating at the surface was 20.2ml O-2 min(-1) kg(-1), 2.1 times the predicted resting metabolic rate. During steady-state voluntary swimming against a how, their Po, increased with water speed, reaching 74 mi O-2 min(-1) kg(-1) at 1.3 ms(-1), which corresponded to an increase in metabolic rate from 11 to 25 W kg(-1). The cost of transport decreased,vith swimming velocity, approaching a minimum of 19 J kg(-1) m(-1) for a swimming speed of 1.3 m s(-1) Surface swimming in the cormorant costs approximately 18% less than sub-surface swimming. This confirms similar findings in tufted ducks (Aythya fuligula) and supports the hypothesis that increased energy requirements are necessary in these bird diving to overcome buoyancy and heat submergence.

1994
Kooyman, GL, Ponganis PJ.  1994.  Emperor penguin oxygen consumption, heart rate and plasma lactate levels during graded swimming exercise. Journal of Experimental Biology. 195:199-209. AbstractWebsite

Oxygen consumption (V-O2), heart rate and blood chemistry were measured in four emperor penguins, Aptenodytes forsteri (Gray), during graded swimming exercise. The maximum V-O2, obtained, 52ml O-2 kg(-1) min(-1), was 7.8 times the measured resting V-O2 of 6.7 ml O-2 kg(-1) min(-1) and 9.1 times the predicted resting V-O2. As the swimming effort rose, a linear increase in surface and submerged heart rates (fH) occurred. The highest average maximum surface and submersion heart rates of any bird were 213 and 210 beats min(-1), respectively. No increase in plasma lactate concentrations occurred until V-O2 was greater than 25 ml O-2 kg(-1) min(-1). At the highest V-O2 values measured, plasma lactate concentration reached 9.4 mmol l(-1). In comparison with other animals of approximately the same mass, the aerobic capacity of the emperor penguin is less than those of the emu and dog but about the same as those of the seal, sea lion and domestic goat. For aquatic animals, a low aerobic capacity seems to be consistent with the needs of parsimonious oxygen utilization while breath-holding.