Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Ponganis, PJ, St Leger J, Scadeng M.  2015.  Penguin lungs and air sacs: implications for baroprotection, oxygen stores and buoyancy. Journal of Experimental Biology. 218:720-730.   10.1242/jeb.113647   AbstractWebsite

The anatomy and volume of the penguin respiratory system contribute significantly to pulmonary baroprotection, the body O-2 store, buoyancy and hence the overall diving physiology of penguins. Therefore, three-dimensional reconstructions from computerized tomographic (CT) scans of live penguins were utilized to measure lung volumes, air sac volumes, tracheobronchial volumes and total body volumes at different inflation pressures in three species with different dive capacities [Adelie (Pygoscelis adeliae), king (Aptenodytes patagonicus) and emperor (A. forsteri) penguins]. Lung volumes scaled to body mass according to published avian allometrics. Air sac volumes at 30 cm H2O (2.94 kPa) inflation pressure, the assumed maximum volume possible prior to deep dives, were two to three times allometric air sac predictions and also two to three times previously determined end-of-dive total air volumes. Although it is unknown whether penguins inhale to such high volumes prior to dives, these values were supported by (a) body density/buoyancy calculations, (b) prior air volume measurements in free-diving ducks and (c) previous suggestions that penguins may exhale air prior to the final portions of deep dives. Based upon air capillary volumes, parabronchial volumes and tracheobronchial volumes estimated from the measured lung/airway volumes and the only available morphometry study of a penguin lung, the presumed maximum air sac volumes resulted in air sac volume to air capillary/parabronchial/tracheobronchial volume ratios that were not large enough to prevent barotrauma to the non-collapsing, rigid air capillaries during the deepest dives of all three species, and during many routine dives of king and emperor penguins. We conclude that volume reduction of airways and lung air spaces, via compression, constriction or blood engorgement, must occur to provide pulmonary baroprotection at depth. It is also possible that relative air capillary and parabronchial volumes are smaller in these deeper-diving species than in the spheniscid penguin of the morphometry study. If penguins do inhale to this maximum air sac volume prior to their deepest dives, the magnitude and distribution of the body O-2 store would change considerably. In emperor penguins, total body O-2 would increase by 75%, and the respiratory fraction would increase from 33% to 61%. We emphasize that the maximum pre-dive respiratory air volume is still unknown in penguins. However, even lesser increases in air sac volume prior to a dive would still significantly increase the O-2 store. More refined evaluations of the respiratory O-2 store and baroprotective mechanisms in penguins await further investigation of species-specific lung morphometry, start-of-dive air volumes and body buoyancy, and the possibility of air exhalation during dives.

Stockard, TK, Levenson DH, Berg L, Fransioli JR, Baranov EA, Ponganis PJ.  2007.  Blood oxygen depletion during rest-associated apneas of northern elephant seals (Mirounga angustirostris). Journal of Experimental Biology. 210:2607-2617.   10.1242/jeb.008078   AbstractWebsite

Blood gases (P-O2, P-CO2, pH), oxygen content, hematocrit and hemoglobin concentration were measured during rest-associated apneas of nine juvenile northern elephant seals. In conjunction with blood volume determinations, these data were used to determine total blood oxygen stores, the rate and magnitude of blood O-2 depletion, the contribution of the blood O-2 store to apneic metabolic rate, and the egree of hypoxemia that occurs during these breath-holds. Mean body mass was 66 +/- 9.7 kg (+/- s.d.); blood volume was 196 +/- 20 ml kg(-1); and hemoglobin concentration was 23.5 +/- 1.5 g dl(-1). Rest apneas ranged in duration from 3.1 to 10.9 min. Arterial P-O2 declined exponentially during apnea, ranging between a maximum of 108 mmHg and a minimum of 18 mmHg after a 9.1 min breath-hold. Venous P-O2 values were indistinguishable from arterial values after the first minute of apnea; the lowest venous P-O2 recorded was 15 mmHg after a 7.8 min apnea. O-2 contents were also similar between the arterial and venous systems, declining linearly at rates of 2.3 and 2.0 ml O-2 dl(-1) min (-1), respectively, from mean initial values of 27.2 and 26.0 ml O-2 dl(-1). These blood O-2 depletion rates are approximately twice the reported values during forced submersion and are consistent with maintenance of previously measured high cardiac outputs during rest-associated breath-holds. During a typical 7-min apnea, seals consumed, on average, 56% of the initial blood O-2 store of 52 ml O-2 kg(-1); this contributed 4.2 ml O-2 kg(-1) min(-1) to total body metabolic rate during the breath-hold. Extreme hypoxemic tolerance in these seals was demonstrated by arterial P-O2 values during late apnea that were less than human thresholds for shallow-water blackout. Despite such low P-O2s, there was no evidence of significant anaerobic metabolism, as changes in blood pH were minimal and attributable to increased P-CO2. These findings and the previously reported lack of lactate accumulation during these breath- holds are consistent with the maintenance of aerobic metabolism even at low oxygen tensions during rest- associated apneas. Such hypoxemic tolerance is necessary in order to allow dissociation of O-2 from hemoglobin and provide effective utilization of the blood O-2 store.

Ponganis, PJ, Kooyman GL, Winter LM, Starke LN.  1997.  Heart rate and plasma lactate responses during submerged swimming and trained diving in California sea lions, Zalophus californianus. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology. 167:9-16.   10.1007/s003600050042   AbstractWebsite

California sea lions, Zalophus californianus, were trained to elicit maximum voluntary breath holds during stationary underwater targeting, submerged swimming, and trained diving. Lowest heart rate during rest periods was 57 bpm. The heart rate profiles in all three protocols were dominated by a bradycardia of 20-50 bpm, and demonstrated that otariid diving heart rates were at or below resting heart rate. Venous blood samples were collected after submerged swimming periods of 1-3 min. Plasma lactate began to increase only after 2.3-min submersions. This rise in lactate and our inability to train sea lions to dive or swim submerged for periods longer than 3 min lead us to conclude that an aerobic limit had been reached. Due to the similarity of heart rate responses and swimming velocities recorded during submerged swimming and trained diving, this 2.3-min limit should approximate the aerobic dive limit in these 40-kg sea lions. Total body O-2 stores, based on measurements of blood and muscle O-2 stores in these animals, and prior lung O-2 Store analyses, were 37-43 ml O-2 kg(-1). The aerobic dive limit, calculated with these O-2 stores and prior measurements of at-sea metabolic rates of sea lions, is 1.8-2 min, similar to that measured by the change in post-submersion lactate concentration.