Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2017
Ponganis, PJ, McDonald BI, Tift MS, Williams CL.  2017.  Heart rate regulation in diving sea lions: the vagus nerve rules. Journal of Experimental Biology. 220:1372-1381.   10.1242/jeb.146779   AbstractWebsite

Recent publications have emphasized the potential generation of morbid cardiac arrhythmias secondary to autonomic conflict in diving marine mammals. Such conflict, as typified by cardiovascular responses to cold water immersion in humans, has been proposed to result from exercise-related activation of cardiac sympathetic fibers to increase heart rate, combined with depth-related changes in parasympathetic tone to decrease heart rate. After reviewing the marine mammal literature and evaluating heart rate profiles of diving California sea lions (Zalophus californianus), we present an alternative interpretation of heart rate regulation that de-emphasizes the concept of autonomic conflict and the risk of morbid arrhythmias in marine mammals. We hypothesize that: (1) both the sympathetic cardiac accelerator fibers and the peripheral sympathetic vasomotor fibers are activated during dives even without exercise, and their activities are elevated at the lowest heart rates in a dive when vasoconstriction is maximal, (2) in diving animals, parasympathetic cardiac tone via the vagus nerve dominates over sympathetic cardiac tone during all phases of the dive, thus producing the bradycardia, (3) adjustment in vagal activity, which may be affected by many inputs, including exercise, is the primary regulator of heart rate and heart rate fluctuations during diving, and (4) heart beat fluctuations (benign arrhythmias) are common in marine mammals. Consistent with the literature and with these hypotheses, we believe that the generation of morbid arrhythmias because of exercise or stress during dives is unlikely in marine mammals.

2010
Zenteno-Savin, T, Leger JS, Ponganis PJ.  2010.  Hypoxemic and ischemic tolerance in emperor penguins. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology. 152:18-23.   10.1016/j.cbpc.2010.02.007   AbstractWebsite

Oxygen store depletion and a diving bradycardia in emperor penguins (Aptenodytes forsteri) expose tissues to critical levels of hypoxemia and ischemia. To assess the prevention of re-perfusion injury and reactive oxygen species (ROS) damage in emperor penguins, superoxide radical production, lipid peroxidation (thiobarbituric acid reactive substances (TBARS)), and antioxidant enzyme activity profiles in biopsy samples from muscle and liver were determined and compared to those in the chicken and 8 species of flighted marine birds (non-divers and plunge divers). In muscle of emperor penguins, superoxide production and TBARS levels were not distinctly different from those in the other species; among the antioxidant enzymes, catalase (CAT) and glutathione-S-transferase (GST) activities were significantly elevated above all species. In the liver of emperor penguins, TBARS levels were not significantly different from other species; only CAT activity was significantly elevated, although GST and glutathione peroxidase (GPX) activities were 2-3 times higher than those in other species. The potential for ROS formation and lipid peroxidation is not reduced in the pectoral muscle or liver of the emperor penguin. Scavenging of hydrogen peroxide by CAT and the conjugation of glutathione with reactive intermediates and peroxides by GST and GPX appear to be important in the prevention of ROS damage and re-perfusion injury in these birds. (C) 2010 Elsevier Inc. All rights reserved.

2006
Ponganis, PJ, Stockard TK, Levenson DH, Berg L, Baranov EA.  2006.  Cardiac output and muscle blood flow during rest-associated apneas of elephant seals. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology. 144:105-111.   10.1016/j.cbpa.2006.02.009   AbstractWebsite

In order to evaluate hemodynamics and blood flow during rest-associated apnea in young elephant seals (Mirounga angustirostris), cardiac outputs (CO, thermodilution), heart rates (HR), and muscle blood flow (MBF, laser Doppler flowmetry) were measured.. Mean apneic COs and HRs of three seals were 46% and 39% less than eupneic values, respectively (2.1 +/- 0.3 vs. 4.0 +/- 0.1 mL kg(-1) s(-1), and 54 6 vs. 89 14 beats min(-1)). The mean apneic stroke volume (SV) was not significantly different from the eupneic value (2.3 +/- 0.2 vs. 2.7 +/- 0.5 mL kg(-1)). Mean apneic MBF of three seals was 51% of the eupneic value. The decline in MBF during apnea was gradual, and variable in both rate and magnitude. In contrast to values previously documented in seals during forced submersions (FS), CO and SV during rest-associated apneas were maintained at levels characteristic of previously published values in similarly-sized terrestrial mammals at rest. Apneic COs of such magnitude and incomplete muscle ischemia during the apnea suggest that (1) most organs are not ischemic during rest-associated apneas, (2) the blood O-2 depletion rate is greater during rest-associated apneas than during FS, and (3) the blood O-2 store is not completely isolated from muscle during rest-associated apneas. (c) 2006 Elsevier Inc. All rights reserved.