Publications

Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
2010
Meir, JU, Ponganis PJ.  2010.  Blood temperature profiles of diving elephant seals. Physiological and Biochemical Zoology. 83:531-540.   10.1086/651070   AbstractWebsite

Hypothermia-induced reductions in metabolic rate have been proposed to suppress metabolism and prolong the duration of aerobic metabolism during dives of marine mammals and birds. To determine whether core hypothermia might contribute to the repetitive long-duration dives of the northern elephant seal Mirounga angustirostris, blood temperature profiles were obtained in translocated juvenile elephant seals equipped with a thermistor and backpack recorder. Representative temperature (the y-intercept of the mean temperature vs. dive duration relationship) was 37.2 degrees +/- 0.6 degrees C (n=3 seals) in the extradural vein, 38.1 degrees +/- 0.7 degrees C (n=4 seals) in the hepatic sinus, and 38.8 degrees +/- 16 degrees C (n=6 seals) in the aorta. Mean temperature was significantly though weakly negatively related to dive duration in all but one seal. Mean venous temperatures of all dives of individual seals ranged between 36 degrees and 38 degrees C, while mean arterial temperatures ranged between 35 degrees and 39 degrees C. Transient decreases in venous and arterial temperatures to as low as 30 degrees-33 degrees C occurred in some dives >30 min (0.1% of dives in the study). The lack of significant core hypothermia during routine dives (10-30 min) and only a weak negative correlation of mean temperature with dive duration do not support the hypothesis that a cold-induced Q(10) effect contributes to metabolic suppression of central tissues during dives. The wide range of arterial temperatures while diving and the transient declines in temperature during long dives suggest that alterations in blood flow patterns and peripheral heat loss contribute to thermoregulation during diving.

2009
Meir, JU, Ponganis PJ.  2009.  High-affinity hemoglobin and blood oxygen saturation in diving emperor penguins. Journal of Experimental Biology. 212:3330-3338.   10.1242/jeb.033761   AbstractWebsite

The emperor penguin (Aptenodytes forsteri) thrives in the Antarctic underwater environment, diving to depths greater than 500m and for durations longer than 23 min. To examine mechanisms underlying the exceptional diving ability of this species and further describe blood oxygen (O(2)) transport and depletion while diving, we characterized the O(2)-hemoglobin (Hb) dissociation curve of the emperor penguin in whole blood. This allowed us to (1) investigate the biochemical adaptation of Hb in this species, and (2) address blood O(2) depletion during diving, by applying the dissociation curve to previously collected partial pressure of O(2) (P(O2)) profiles to estimate in vivo Hb saturation (S(O2)) changes during dives. This investigation revealed enhanced Hb-O(2) affinity (P(50)=28mmHg, pH7.5) in the emperor penguin, similar to high-altitude birds and other penguin species. This allows for increased O(2) at low blood P(O2) levels during diving and more complete depletion of the respiratory O(2) store. S(O2) profiles during diving demonstrated that arterial S(O2) levels are maintained near 100% throughout much of the dive, not decreasing significantly until the final ascent phase. End-of-dive venous S(O2) values were widely distributed and optimization of the venous blood O(2) store resulted from arterialization and near complete depletion of venous blood O(2) during longer dives. The estimated contribution of the blood O(2) store to diving metabolic rate was low and highly variable. This pattern is due, in part, to the influx of O(2) from the lungs into the blood during diving, and variable rates of tissue O(2) uptake.

2007
Ponganis, PJ, Stockard TK, Meir JU, Williams CL, Ponganis KV, Van Dam RP, Howard R.  2007.  Returning on empty: extreme blood O-2 depletion underlies dive capacity of emperor penguins. Journal of Experimental Biology. 210:4279-4285.   10.1242/jeb.011221   AbstractWebsite

Blood gas analyses from emperor penguins (Aptenodytes forsteri) at rest, and intravascular P-O2 profiles from free-diving birds were obtained in order to examine hypoxemic tolerance and utilization of the blood O-2 store during dives. Analysis of blood samples from penguins at rest revealed arterial P(O2)s and O-2 contents of 68 +/- 7 mmHg (1 mmHg= 133.3 Pa) and 22.5 +/- 1.3 ml O-2 dl(-1) (N= 3) and venous values of 41 +/- 10 mmHg and 17.4 +/- 2.9 ml O-2 dl(-1) (N= 9). Corresponding arterial and venous Hb saturations for a hemoglobin (Hb) concentration of 18 g dl(-1) were > 91% and 70%, respectively. Analysis of P-O2 profiles obtained from birds equipped with intravascular P-O2 electrodes and backpack recorders during dives revealed that (1) the decline of the final blood P-O2 of a dive in relation to dive duration was variable, (2) final venous P-O2 values spanned a 40-mmHg range at the previously measured aerobic dive limit (ADL; dive duration associated with onset of post-dive blood lactate accumulation), (3) final arterial, venous and previously measured air sac P-O2 values were indistinguishable in longer dives, and (4) final venous P-O2 values of longer dives were as low as 1-6 mmHg during dives. Although blood O-2 is not depleted at the ADL, nearly complete depletion of the blood O-2 store occurs in longer dives. This extreme hypoxemic tolerance, which would be catastrophic in many birds and mammals, necessitates biochemical and molecular adaptations, including a shift in the O-2-Hb dissociation curve of the emperor penguin in comparison to those of most birds. A relatively higher-affinity Hb is consistent with blood P-O2 values and O-2 contents of penguins at rest.