Export 7 results:
Sort by: Author Title Type [ Year  (Desc)]
Tift, MS, Ponganis PJ, Crocker DE.  2014.  Elevated carboxyhemoglobin in a marine mammal, the northern elephant seal. Journal of Experimental Biology. 217:1752-1757.   10.1242/jeb.100677   AbstractWebsite

Low concentrations of endogenous carbon monoxide (CO), generated primarily through degradation of heme from hemeproteins, have been shown to maintain physiological function of organs and to exert cytoprotective effects. However, high concentrations of carboxyhemoglobin (COHb), formed by CO binding to hemoglobin, potentially prevent adequate O-2 delivery to tissues by lowering arterial O-2 content. Elevated heme-protein concentrations, as found in marine mammals, are likely associated with greater heme degradation, more endogenous CO production and, consequently, elevated COHb concentrations. Therefore, we measured COHb in elephant seals, a species with large blood volumes and elevated hemoglobin and myoglobin concentrations. The levels of COHb were positively related to the total hemoglobin concentration. The maximum COHb value was 10.4% of total hemoglobin concentration. The mean (+/- s.e.m.) value in adult seals was 8.7 +/- 0.3% (N=6), while juveniles and pups (with lower heme-protein contents) had lower mean COHb values of 7.6 +/- 0.2% and 7.1 +/- 0.3%, respectively (N=9 and N=9, respectively). Serial samples over several hours revealed little to no fluctuation in COHb values. This consistent elevation in COHb suggests that the magnitude and/ or rate of heme-protein turnover is much higher than in terrestrial mammals. The maximum COHb values from this study decrease total body O-2 stores by 7%, thereby reducing the calculated aerobic dive limit for this species. However, the constant presence of elevated CO in blood may also protect against potential ischemia-reperfusion injury associated with the extreme breath-holds of elephant seals. We suggest the elephant seal represents an ideal model for understanding the potential cytoprotective effects, mechanisms of action and evolutionary adaptation associated with chronically elevated concentrations of endogenously produced CO.

Williams, CL, Meir JU, Ponganis PJ.  2011.  What triggers the aerobic dive limit? Patterns of muscle oxygen depletion during dives of emperor penguins Journal of Experimental Biology. 214:1802-1812.   10.1242/jeb.052233   AbstractWebsite

The physiological basis of the aerobic dive limit (ADL), the dive duration associated with the onset of post-dive blood lactate elevation, is hypothesized to be depletion of the muscle oxygen (O(2)) store. A dual wavelength near-infrared spectrophotometer was developed and used to measure myoglobin (Mb) O(2) saturation levels in the locomotory muscle during dives of emperor penguins (Aptenodytes forsteri). Two distinct patterns of muscle O(2) depletion were observed. Type A dives had a monotonic decline, and, in dives near the ADL, the muscle O(2) store was almost completely depleted. This pattern of Mb desaturation was consistent with lack of muscle blood flow and supports the hypothesis that the onset of post-dive blood lactate accumulation is secondary to muscle O(2) depletion during dives. The mean type A Mb desaturation rate allowed for calculation of a mean muscle O(2) consumption of 12.4. ml O(2). kg(-1) muscle. min(-1), based on a Mb concentration of 6.4. g 100. g(-1) muscle. Type B desaturation patterns demonstrated a more gradual decline, often reaching a mid-dive plateau in Mb desaturation. This mid-dive plateau suggests maintenance of some muscle perfusion during these dives. At the end of type B dives, Mb desaturation rate increased and, in dives beyond the ADL, Mb saturation often reached near 0%. Thus, although different physiological strategies may be used during emperor penguin diving, both Mb desaturation patterns support the hypothesis that the onset of post-dive lactate accumulation is secondary to muscle O(2) store depletion.

Meir, JU, Ponganis PJ.  2010.  Blood temperature profiles of diving elephant seals. Physiological and Biochemical Zoology. 83:531-540.   10.1086/651070   AbstractWebsite

Hypothermia-induced reductions in metabolic rate have been proposed to suppress metabolism and prolong the duration of aerobic metabolism during dives of marine mammals and birds. To determine whether core hypothermia might contribute to the repetitive long-duration dives of the northern elephant seal Mirounga angustirostris, blood temperature profiles were obtained in translocated juvenile elephant seals equipped with a thermistor and backpack recorder. Representative temperature (the y-intercept of the mean temperature vs. dive duration relationship) was 37.2 degrees +/- 0.6 degrees C (n=3 seals) in the extradural vein, 38.1 degrees +/- 0.7 degrees C (n=4 seals) in the hepatic sinus, and 38.8 degrees +/- 16 degrees C (n=6 seals) in the aorta. Mean temperature was significantly though weakly negatively related to dive duration in all but one seal. Mean venous temperatures of all dives of individual seals ranged between 36 degrees and 38 degrees C, while mean arterial temperatures ranged between 35 degrees and 39 degrees C. Transient decreases in venous and arterial temperatures to as low as 30 degrees-33 degrees C occurred in some dives >30 min (0.1% of dives in the study). The lack of significant core hypothermia during routine dives (10-30 min) and only a weak negative correlation of mean temperature with dive duration do not support the hypothesis that a cold-induced Q(10) effect contributes to metabolic suppression of central tissues during dives. The wide range of arterial temperatures while diving and the transient declines in temperature during long dives suggest that alterations in blood flow patterns and peripheral heat loss contribute to thermoregulation during diving.

Meir, JU, Champagne CD, Costa DP, Williams CL, Ponganis PJ.  2009.  Extreme hypoxemic tolerance and blood oxygen depletion in diving elephant seals. American Journal of Physiology-Regulatory Integrative and Comparative Physiology. 297:R927-R939.   10.1152/ajpregu.00247.2009   AbstractWebsite

Meir JU, Champagne CD, Costa DP, Williams CL, Ponganis PJ. Extreme hypoxemic tolerance and blood oxygen depletion in diving elephant seals. Am J Physiol Regul Integr Comp Physiol 297: R927-R939, 2009. First published July 29, 2009; doi: 10.1152/ajpregu.00247.2009.-Species that maintain aerobic metabolism when the oxygen (O(2)) supply is limited represent ideal models to examine the mechanisms underlying tolerance to hypoxia. The repetitive, long dives of northern elephant seals (Mirounga angustirostris) have remained a physiological enigma as O(2) stores appear inadequate to maintain aerobic metabolism. We evaluated hypoxemic tolerance and blood O(2) depletion by 1) measuring arterial and venous O(2) partial pressure (PO(2)) during dives with a PO(2)/temperature recorder on elephant seals, 2) characterizing the O(2) hemoglobin (O(2)-Hb) dissociation curve of this species, 3) applying the dissociation curve to PO(2) profiles to obtain %Hb saturation (SO(2)), and 4) calculating blood O(2) store depletion during diving. Optimization of O(2) stores was achieved by high venous O(2) loading and almost complete depletion of blood O(2) stores during dives, with net O(2) content depletion values up to 91% (arterial) and 100% (venous). In routine dives (>10 min) Pv(O2) and Pa(O2) values reached 2-10 and 12-23 mmHg, respectively. This corresponds to SO(2) of 1-26% and O(2) contents of 0.3 (venous) and 2.7 ml O(2)/dl blood (arterial), demonstrating remarkable hypoxemic tolerance as PaO(2) is nearly equivalent to the arterial hypoxemic threshold of seals. The contribution of the blood O(2) store alone to metabolic rate was nearly equivalent to resting metabolic rate, and mean temperature remained near 37 degrees C. These data suggest that elephant seals routinely tolerate extreme hypoxemia during dives to completely utilize the blood O(2) store and maximize aerobic dive duration.

Ponganis, PJ, Kreutzer U, Stockard TK, Lin PC, Sailasuta N, Tran TK, Hurd R, Jue T.  2008.  Blood flow and metabolic regulation in seal muscle during apnea. Journal of Experimental Biology. 211:3323-3332.   10.1242/jeb.018887   AbstractWebsite

In order to examine myoglobin (Mb) function and metabolic responses of seal muscle during progressive ischemia and hypoxemia, Mb saturation and high-energy phosphate levels were monitored with NMR spectroscopy during sleep apnea in elephant seals (Mirounga angustirostris). Muscle blood flow (MBF) was measured with laser-Doppler flowmetry (LDF). During six, spontaneous, 8-12 min apneas of an unrestrained juvenile seal, apneic MBF decreased to 46 +/- 10% of the mean eupneic MBF. By the end of apnea, MBF reached 31 +/- 8% of the eupneic value. The t(1/2) for 90% decline in apneic MBF was 1.9 +/- 1.2 min. The initial post-apneic peak in MBF occurred within 0.20 +/- 0.04 min after the start of eupnea. NMR measurements revealed that Mb desaturated rapidly from its eupenic resting level to a lower steady state value within 4 min after the onset of apnea at rates between 1.7 +/- 1.0 and 3.8 +/- 1.5% min(-1), which corresponded to a muscle O(2) depletion rate of 1-2.3 ml O(2)kg(-1) min(-1). High-energy phosphate levels did not change with apnea. During the transition from apnea to eupnea, Mb resaturated to 95% of its resting level within the first minute. Despite the high Mb concentration in seal muscle, experiments detected Mb diffusing with a translational diffusion coefficient of 4.5 x 10(-7) cm(2) s(-1), consistent with the value observed in rat myocardium. Equipoise P(O2) analysis revealed that Mb is the predominant intracellular O(2) transporter in elephant seals during eupnea and apnea.

Ponganis, PJ, Stockard TK, Levenson DH, Berg L, Baranov EA.  2006.  Cardiac output and muscle blood flow during rest-associated apneas of elephant seals. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology. 144:105-111.   10.1016/j.cbpa.2006.02.009   AbstractWebsite

In order to evaluate hemodynamics and blood flow during rest-associated apnea in young elephant seals (Mirounga angustirostris), cardiac outputs (CO, thermodilution), heart rates (HR), and muscle blood flow (MBF, laser Doppler flowmetry) were measured.. Mean apneic COs and HRs of three seals were 46% and 39% less than eupneic values, respectively (2.1 +/- 0.3 vs. 4.0 +/- 0.1 mL kg(-1) s(-1), and 54 6 vs. 89 14 beats min(-1)). The mean apneic stroke volume (SV) was not significantly different from the eupneic value (2.3 +/- 0.2 vs. 2.7 +/- 0.5 mL kg(-1)). Mean apneic MBF of three seals was 51% of the eupneic value. The decline in MBF during apnea was gradual, and variable in both rate and magnitude. In contrast to values previously documented in seals during forced submersions (FS), CO and SV during rest-associated apneas were maintained at levels characteristic of previously published values in similarly-sized terrestrial mammals at rest. Apneic COs of such magnitude and incomplete muscle ischemia during the apnea suggest that (1) most organs are not ischemic during rest-associated apneas, (2) the blood O-2 depletion rate is greater during rest-associated apneas than during FS, and (3) the blood O-2 store is not completely isolated from muscle during rest-associated apneas. (c) 2006 Elsevier Inc. All rights reserved.

Spragg, RG, Ponganis PJ, Marsh JJ, Rau GA, Bernhard W.  2004.  Surfactant from diving aquatic mammals. Journal of Applied Physiology. 96:1626-1632.   10.1152/japplphysiol.00898.2003   AbstractWebsite

Diving mammals that descend to depths of 50 - 70 m or greater fully collapse the gas exchanging portions of their lungs and then reexpand these areas with ascent. To investigate whether these animals may have evolved a uniquely developed surfactant system to facilitate repetitive alveolar collapse and expansion, we have analyzed surfactant in bronchoalveolar lavage fluid (BAL) obtained from nine pinnipeds and from pigs and humans. In contrast to BAL from terrestrial mammals, BAL from pinnipeds has a higher concentration of phospholipid and relatively more fluidic phosphatidylcholine molecular species, perhaps to facilitate rapid spreading during alveolar reexpansion. Normalized concentrations of hydrophobic surfactant proteins B and C were not significantly different among pinnipeds and terrestrial mammals by immunologic assay, but separation of proteins by gel electrophoresis indicated a greater content of surfactant protein B in elephant seal surfactant than in human surfactant. Remarkably, surfactant from the deepest diving pinnipeds produced moderately elevated in vitro minimum surface tension measurements, a finding not explained by the presence of protein or neutral lipid inhibitors. Further study of the composition and function of pinniped surfactants may contribute to the design of optimized therapeutic surfactants.