Export 14 results:
Sort by: Author Title Type [ Year  (Desc)]
Ponganis, PJ, McDonald BI, Tift MS, Williams CL.  2017.  Heart rate regulation in diving sea lions: the vagus nerve rules. Journal of Experimental Biology. 220:1372-1381.   10.1242/jeb.146779   AbstractWebsite

Recent publications have emphasized the potential generation of morbid cardiac arrhythmias secondary to autonomic conflict in diving marine mammals. Such conflict, as typified by cardiovascular responses to cold water immersion in humans, has been proposed to result from exercise-related activation of cardiac sympathetic fibers to increase heart rate, combined with depth-related changes in parasympathetic tone to decrease heart rate. After reviewing the marine mammal literature and evaluating heart rate profiles of diving California sea lions (Zalophus californianus), we present an alternative interpretation of heart rate regulation that de-emphasizes the concept of autonomic conflict and the risk of morbid arrhythmias in marine mammals. We hypothesize that: (1) both the sympathetic cardiac accelerator fibers and the peripheral sympathetic vasomotor fibers are activated during dives even without exercise, and their activities are elevated at the lowest heart rates in a dive when vasoconstriction is maximal, (2) in diving animals, parasympathetic cardiac tone via the vagus nerve dominates over sympathetic cardiac tone during all phases of the dive, thus producing the bradycardia, (3) adjustment in vagal activity, which may be affected by many inputs, including exercise, is the primary regulator of heart rate and heart rate fluctuations during diving, and (4) heart beat fluctuations (benign arrhythmias) are common in marine mammals. Consistent with the literature and with these hypotheses, we believe that the generation of morbid arrhythmias because of exercise or stress during dives is unlikely in marine mammals.

McDonald, BI, Ponganis PJ.  2014.  Deep-diving sea lions exhibit extreme bradycardia in long-duration dives. Journal of Experimental Biology. 217:1525-1534.   10.1242/jeb.098558   AbstractWebsite

Heart rate and peripheral blood flow distribution are the primary determinants of the rate and pattern of oxygen store utilisation and ultimately breath-hold duration in marine endotherms. Despite this, little is known about how otariids (sea lions and fur seals) regulate heart rate (f(H)) while diving. We investigated dive f(H) in five adult female California sea lions (Zalophus californianus) during foraging trips by instrumenting them with digital electrocardiogram (ECG) loggers and time depth recorders. In all dives, dive f(H) (number of beats/duration; 50 +/- 9 beats min(-1)) decreased compared with surface rates (113 +/- 5 beats min(-1)), with all dives exhibiting an instantaneous f(H) below resting (<54 beats min(-1)) at some point during the dive. Both dive f(H) and minimum instantaneous f(H) significantly decreased with increasing dive duration. Typical instantaneous f(H) profiles of deep dives (>100 m) consisted of: (1) an initial rapid decline in f(H) resulting in the lowest instantaneous f(H) of the dive at the end of descent, often below 10 beats min-1 in dives longer than 6 min in duration; (2) a slight increase in f(H) to similar to 10-40 beats min(-1) during the bottom portion of the dive; and (3) a gradual increase in f(H) during ascent with a rapid increase prior to surfacing. Thus, f(H) regulation in deep-diving sea lions is not simply a progressive bradycardia. Extreme bradycardia and the presumed associated reductions in pulmonary and peripheral blood flow during late descent of deep dives should (a) contribute to preservation of the lung oxygen store, (b) increase dependence of muscle on the myoglobin-bound oxygen store, (c) conserve the blood oxygen store and (d) help limit the absorption of nitrogen at depth. This f(H) profile during deep dives of sea lions may be characteristic of deep-diving marine endotherms that dive on inspiration as similar f(H) profiles have been recently documented in the emperor penguin, another deep diver that dives on inspiration.

Wright, AK, Ponganis KV, McDonald BI, Ponganis PJ.  2014.  Heart rates of emperor penguins diving at sea: implications for oxygen store management. Marine Ecology Progress Series. 496:85-98.   10.3354/meps10592   AbstractWebsite

Heart rate (f(H)) contributes to control of blood oxygen (O-2) depletion through regulation of the magnitude of pulmonary gas exchange and of peripheral blood flow in diving vertebrates such as penguins. Therefore, we measured H during foraging trip dives of emperor penguins Aptenodytes forsteri equipped with digital electrocardiogram (ECG) recorders and time depth recorders (TDRs). Median dive f(H) (total heartbeats/duration, 64 beats min(-1)) was higher than resting H (56 beats min(-1)) and was negatively related to dive duration. Median dive f(H) in dives greater than the 5.6 min aerobic dive limit (ADL; dive duration associated with the onset of a net accumulation of lactic acid above resting levels) was significantly less than the median dive f(H) of dives less than the ADL (58 vs. 66 beats min(-1)). f(H) profile patterns differed between shallow (<50 m) and deep dives (>250 m), with values usually declining to levels near resting f(H) in shallow, short-duration dives, and to levels as low as 10 beats min(-1) during the deepest segments of deep dives. The total number of heartbeats in a dive was variable in shallow dives and consistently high in deep dives. A true bradycardia (f(H) below resting levels) during segments of 31% of shallow and deep dives of emperor penguins is consistent with reliance on myoglobin-bound O-2 stores for aerobic muscle metabolism that is especially accentuated during the severe bradycardias of deep dives. Although f(H) is low during the deepest segments of deep dives, the total number and distribution of heartbeats in deep, long dives suggest that pulmonary gas exchange and peripheral blood flow primarily occur at shallow depths.

Ponganis, PJ, Meir JU, Williams CL.  2011.  In pursuit of Irving and Scholander: a review of oxygen store management in seals and penguins. Journal of Experimental Biology. 214:3325-3339.   10.1242/jeb.031252   AbstractWebsite

Since the introduction of the aerobic dive limit (ADL) 30 years ago, the concept that most dives of marine mammals and sea birds are aerobic in nature has dominated the interpretation of their diving behavior and foraging ecology. Although there have been many measurements of body oxygen stores, there have been few investigations of the actual depletion of those stores during dives. Yet, it is the pattern, rate and magnitude of depletion of O(2) stores that underlie the ADL. Therefore, in order to assess strategies of O(2) store management, we review (a) the magnitude of O(2) stores, (b) past studies of O(2) store depletion and (c) our recent investigations of O(2) store utilization during sleep apnea and dives of elephant seals (Mirounga angustirostris) and during dives of emperor penguins (Aptenodytes forsteri). We conclude with the implications of these findings for (a) the physiological responses underlying O(2) store utilization, (b) the physiological basis of the ADL and (c) the value of extreme hypoxemic tolerance and the significance of the avoidance of re-perfusion injury in these animals.

Ponganis, PJ, Meir JU, Williams CL.  2010.  Oxygen store depletion and the aerobic dive limit in emperor penguins. Aquatic Biology. 8:237-245.   10.3354/ab00216   AbstractWebsite

The aerobic dive limit (ADL), dive duration associated with the onset of post-dive blood lactate elevation, has been widely used in the interpretation of diving physiology and diving behavior. However, its physiological basis is incompletely understood, and in most studies, ADLs are simply calculated with an O(2) store/O(2) consumption formula. To better understand the ADL, research has been conducted on emperor penguins diving at an isolated dive hole. This work has revealed that O(2) stores are greater than previously estimated, and that the rate of depletion of those O(2) stores appears to be regulated primarily through a diving bradycardia and the efficiency of swimming. Blood and respiratory O(2) stores are not depleted at the 5.6 min ADL determined by post-dive blood lactate measurements. It is hypothesized that muscle, isolated from the circulation during a dive, is the primary source of lactate accumulation. To predict this 5.6 min ADL for these shallow dives at the isolated dive hole with the classic O(2) store/O(2) consumption formula, an O(2) consumption rate of 2x the predicted metabolic rate of a penguin at rest is required. In contrast, if the formula is used to calculate an ADL that is defined as the time for all consumable O(2) stores to be depleted, then a 23.1 min dive, in which final venous partial pressure of oxygen (P(O2)) was 6 mm Hg (0.8 kPa), represents such a maximum limit and demonstrates that an O(2) consumption rate of about 0.5x the predicted rate of an emperor penguin at rest is required in the formula.

Meir, JU, Stockard TK, Williams CL, Ponganis KV, Ponganis PJ.  2008.  Heart rate regulation and extreme bradycardia in diving emperor penguins. Journal of Experimental Biology. 211:1169-1179.   10.1242/jeb.013235   AbstractWebsite

To investigate the diving heart rate (f(H)) response of the emperor penguin (Aptenodytes forsteri), the consummate avian diver, birds diving at an isolated dive hole in McMurdo Sound, Antarctica were outfitted with digital electrocardiogram recorders, two-axis accelerometers and time depth recorders ( TDRs). In contrast to any other freely diving bird, a true bradycardia (fH significantly < f(H) at rest) occurred during diving [dive fH (total beats/duration)= 57 +/- 2 beats min(-1), f(H) at rest= 73 +/- 2 beats min(-1) ( mean +/- s. e. m.)]. For dives less than the aerobic dive limit ( ADL; duration beyond which [ blood lactate] increases above resting levels), dive f(H)= 85 +/- 3 beats min(-1), whereas f H in dives greater than the ADL was significantly lower (41 +/- 1 beats min(-1)). In dives greater than the ADL, f(H) reached extremely low values: f H during the last 5 mins of an 18 min dive was 6 beats min(-1). Dive f H and minimum instantaneous f(H) during dives declined significantly with increasing dive duration. Dive f(H) was independent of swim stroke frequency. This suggests that progressive bradycardia and peripheral vasoconstriction ( including isolation of muscle) are primary determinants of blood oxygen depletion in diving emperor penguins. Maximum instantaneous surface interval f(H) in this study is the highest ever recorded for emperor penguins ( 256 beats min(-1)), equivalent to f(H) at V-O2 max., presumably facilitating oxygen loading and post-dive metabolism. The classic Scholander-Irving dive response in these emperor penguins contrasts with the absence of true bradycardia in diving ducks, cormorants, and other penguin species.

Ponganis, PJ.  2007.  Bio-logging of physiological parameters in higher marine vertebrates. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 54:183-192.   10.1016/j.dsr2.2006.11.009   AbstractWebsite

Bio-logging of physiological parameters in higher marine vertebrates had its origins in the field of bio-telemetry in the 1960s and 1970s. The development of microprocessor technology allowed its first application to bio-logging investigations of Weddell seal diving physiology in the early 1980s. Since that time, with the use of increased memory capacity, new sensor technology, and novel data processing techniques, investigators have examined heart rate, temperature, swim speed, stroke frequency, stomach function (gastric pH and motility), heat flux, muscle oxygenation, respiratory rate, diving air volume, and oxygen partial pressure (PO(2)) during diving. Swim speed, heart rate, and body temperature have been the most commonly studied parameters. Bio-logging investigation of pressure effects has only been conducted with the use of blood samplers and nitrogen analyses on animals diving at isolated dive holes. The advantages/disadvantages and limitations of recording techniques, probe placement, calibration techniques, and study conditions are reviewed. (c) 2007 Elsevier Ltd. All rights reserved.

Ponganis, PJ, Stockard TK, Levenson DH, Berg L, Baranov EA.  2006.  Intravascular pressure profiles in elephant seals: Hypotheses on the caval sphincter, extradural vein and venous return to the heart. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology. 145:123-130.   10.1016/j.cbpa.2006.05.012   AbstractWebsite

In order to evaluate bemodynamics in the complex vascular system of phocid seals, intravascular pressure profiles were measured during periods of rest-associated apnea in young elephant seals (Mirounga angustirostris). There were no significant differences between apneic and eupneic mean arterial pressures. During apnea, venous pressure profiles (pulmonary artery, thoracic portion of the vena cava (thoracic vena cava), extradural vein, and hepatic sinus) demonstrated only minor, transient fluctuations. During eupnea, all venous pressure profiles were dominated by respiratory fluctuations. During inspiration, pressures in the thoracic vena cava and extradural vein decreased -9 to -21 mm Hg, and -9 to -17 mm Hg, respectively. In contrast, hepatic sinus pressure increased 2-6 mm Hg during inspiration. Nearly constant hepatic sinus and intrathoracic vascular pressure profiles during the breath-hold period are consistent with incomplete constriction of the caval sphincter during these rest-associated apneas. During eupnea, negative inspiratory intravascular pressures in the chest ("the respiratory pump") should augment venous return via both the venae cavae and the extradural. vein. It is hypothesized that, in addition to the venae cavae, the prominent para-caval venous system of phocid seals (i.e., the extradural vein) is necessary to allow adequate venous return for maintenance of high cardiac outputs and blood pressure during eupnea. (c) 2006 Elsevier Inc. All rights reserved.

Ponganis, PJ, Stockard TK, Levenson DH, Berg L, Baranov EA.  2006.  Cardiac output and muscle blood flow during rest-associated apneas of elephant seals. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology. 144:105-111.   10.1016/j.cbpa.2006.02.009   AbstractWebsite

In order to evaluate hemodynamics and blood flow during rest-associated apnea in young elephant seals (Mirounga angustirostris), cardiac outputs (CO, thermodilution), heart rates (HR), and muscle blood flow (MBF, laser Doppler flowmetry) were measured.. Mean apneic COs and HRs of three seals were 46% and 39% less than eupneic values, respectively (2.1 +/- 0.3 vs. 4.0 +/- 0.1 mL kg(-1) s(-1), and 54 6 vs. 89 14 beats min(-1)). The mean apneic stroke volume (SV) was not significantly different from the eupneic value (2.3 +/- 0.2 vs. 2.7 +/- 0.5 mL kg(-1)). Mean apneic MBF of three seals was 51% of the eupneic value. The decline in MBF during apnea was gradual, and variable in both rate and magnitude. In contrast to values previously documented in seals during forced submersions (FS), CO and SV during rest-associated apneas were maintained at levels characteristic of previously published values in similarly-sized terrestrial mammals at rest. Apneic COs of such magnitude and incomplete muscle ischemia during the apnea suggest that (1) most organs are not ischemic during rest-associated apneas, (2) the blood O-2 depletion rate is greater during rest-associated apneas than during FS, and (3) the blood O-2 store is not completely isolated from muscle during rest-associated apneas. (c) 2006 Elsevier Inc. All rights reserved.

Jobsis, PD, Ponganis PJ, Kooyman GL.  2001.  Effects of training on forced submersion responses in harbor seals. Journal of Experimental Biology. 204:3877-3885. AbstractWebsite

In several pinniped species, the heart rates observed during unrestrained dives are frequently higher than the severe bradycardias recorded during forced submersions. To examine other physiological components of the classic 'dive response' during such moderate bradycardias, a training protocol was developed to habituate harbor seals (Phoca vitulina) to short forced submersions. Significant changes were observed between physiological measurements made during naive and trained submersions (3-3.5min). Differences were found in measurements of heart rate during submersion (naive 18 +/-4.3 beats min(-1) versus trained 35 +/-3.4 beats min(-1)), muscle blood flow measured using laser-Doppler flowmetry (naive 1.8 +/-0.8 ml min(-1) 100 g(-1) versus trained 5.8 +/-3.9 ml min(-1) 100 g(-1)), change in venous P-O 2 (naive -0.44 +/-1.25 kPa versus trained -1.48 +/-0.76 kPa) and muscle deoxygenation rate (naive -0.67 +/-0.27 mvd s(-1) versus trained -0.51 +/-0.18 mvd s(-1), a relative measure of muscle oxygenation provided by the Vander Niroscope, where mvd are milli-vander units). In contrast to the naive situation, the post-submersion increase in plasma lactate levels was only rarely significant in trained seals. Resting eupneic (while breathing) heart rate and total oxygen consumption rates (measured in two seals) were not significantly different between the naive and trained states. This training protocol revealed that the higher heart rate and greater muscle blood flow in the trained seals were associated with a lower muscle deoxygenation rate, presumably secondary to greater extraction of blood O-2 during trained submersions. Supplementation of muscle oxygenation by blood O-2 delivery during diving would increase the rate of blood O-2 depletion but could prolong the duration of aerobic muscle metabolism during diving. This alteration of the dive response may increase the metabolic efficiency of diving.

Ponganis, PJ, Kooyman GL.  2000.  Diving physiology of birds: a history of studies on polar species. Comparative Biochemistry and Physiology a-Molecular and Integrative Physiology. 126:143-151.   10.1016/s1095-6433(00)00208-7   AbstractWebsite

Our knowledge of avian diving physiology has been based primarily on research with polar species. Since Scholander's 1940 monograph, research has expanded from examination of the 'diving reflex' to studies of free-diving birds, and has included laboratory investigations of oxygen stores, muscle adaptations, pressure effects, and cardiovascular/metabolic responses to swimming exercise. Behavioral and energetic studies at sea have shown that common diving durations of many avian species exceed the calculated aerobic diving limits (ADL). Current physiological research is focused on factors, such as heart rate and temperature, which potentially affect the diving metabolic rate and duration of aerobic diving. (C) 2000 Elsevier Science Inc. All rights reserved.

Ponganis, PJ, Kooyman GL.  1999.  Heart rate and electrocardiogram characteristics of a young California gray whale (Eschrichtius robustus). Marine Mammal Science. 15:1198-1207.   10.1111/j.1748-7692.1999.tb00885.x   AbstractWebsite

Electrocardiogram (ECG) analyses of Holter monitor recordings from a young California gray whale were performed to determine ECG waveform characteristics, evaluate the heart rate pattern for sinus arrhythmia, obtain resting heart rates at known body masses as the whale increased in size, and compare those heart rates with predicted heart rates from allometric equations. The PR and QRS intervals (475 +/- 35 msec, 208 +/- 24 msec, respectively, n = 20) support the concept (Meijler et al. 1992) that atrioventricular transmission and ventricular excitation times do not increase linearly in very large mammals. A sinus arrhythmia pattern at rest (apneic heart rates of 15-25 beats per min [bpm] and eupneic heart rates of 34-40 bpm) is consistent with a relative eupneic tachycardia and apneic bradycardia during diving activity of whales. The heart rate-body mass measurements (35-24 bpm at body masses of 3,531-8,200 kg) in this study (1) extend the range of allometric heart rate and body mass data in mammals a full order of magnitude, to almost 10,000 kg, (2) support the use of allometric equations (based primarily on mammals <1,000 kg in body mass) in estimating resting heart rates in whales, and (3) demonstrate that previously reported heart rates in large whales are not representative of resting heart rate, probably secondary to circumstances during measurement.

Ponganis, PJ, Kooyman GL, Van Dam R, Lemaho Y.  1999.  Physiological responses of king penguins during simulated diving to 136 m depth. Journal of Experimental Biology. 202:2819-2822. AbstractWebsite

To evaluate blood N-2 uptake and the role of the respiratory volume (air sacs/lungs) as a N-2 and O-2 reservoir in deep-diving penguins, diving respiratory volume (V-DR), heart rate (f(H)), venous P-N2, blood volume (V-b) and hemoglobin (Hb) concentration were measured in king penguins (Aptenodytes patagonicus) during forced submersions and compressions equivalent to depths up to 136 m, V-DR was 69+/-18 ml kg(-1) (mean +/- S.D.) in 62 submersions ranging from 4.4 atmospheres absolute (ATA; 1 ATA=101 kPa) (34 m) to 14.6 ATA (136 m), Submersion f(H) averaged 30+/-7 beats min(-1) (N=18), approximately 20% of pre- and post-submersion values. Venous P-N2 values during and after submersions as deep as 11.2 ATA (102 m) were all less than 2.8 atmospheres N-2 (283 kPa) above ambient pressure, a previously measured threshold for symptomatic bubble formation. Mean V-b was 83+/-8 ml kg(-1) (N=6); [Hb] was 17.6+/-0.7 g dl(-1) (N=7), On a mass-specific basis, mean V-DR, and therefore total available N-2, is 41% of that in shallow-diving penguin species. Total body O-2 stores, calculated from measured V-DR, V-b, [Hb], muscle mass and myoglobin concentration, are 45 ml kg(-1), with 23 % in the respiratory system. This small respiratory fraction in comparison with that in shallow-diving penguins suggests a lesser reliance on the respiratory oxygen store for extended breath-holding and also a reduced uptake of nitrogen at depth.

Kooyman, GL, Ponganis PJ.  1994.  Emperor penguin oxygen consumption, heart rate and plasma lactate levels during graded swimming exercise. Journal of Experimental Biology. 195:199-209. AbstractWebsite

Oxygen consumption (V-O2), heart rate and blood chemistry were measured in four emperor penguins, Aptenodytes forsteri (Gray), during graded swimming exercise. The maximum V-O2, obtained, 52ml O-2 kg(-1) min(-1), was 7.8 times the measured resting V-O2 of 6.7 ml O-2 kg(-1) min(-1) and 9.1 times the predicted resting V-O2. As the swimming effort rose, a linear increase in surface and submerged heart rates (fH) occurred. The highest average maximum surface and submersion heart rates of any bird were 213 and 210 beats min(-1), respectively. No increase in plasma lactate concentrations occurred until V-O2 was greater than 25 ml O-2 kg(-1) min(-1). At the highest V-O2 values measured, plasma lactate concentration reached 9.4 mmol l(-1). In comparison with other animals of approximately the same mass, the aerobic capacity of the emperor penguin is less than those of the emu and dog but about the same as those of the seal, sea lion and domestic goat. For aquatic animals, a low aerobic capacity seems to be consistent with the needs of parsimonious oxygen utilization while breath-holding.