Export 41 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O [P] Q R S T U V W X Y Z   [Show ALL]
Ponganis, PJ, Stockard TK, Levenson DH, Berg L, Baranov EA.  2006.  Cardiac output and muscle blood flow during rest-associated apneas of elephant seals. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology. 144:105-111.   10.1016/j.cbpa.2006.02.009   AbstractWebsite

In order to evaluate hemodynamics and blood flow during rest-associated apnea in young elephant seals (Mirounga angustirostris), cardiac outputs (CO, thermodilution), heart rates (HR), and muscle blood flow (MBF, laser Doppler flowmetry) were measured.. Mean apneic COs and HRs of three seals were 46% and 39% less than eupneic values, respectively (2.1 +/- 0.3 vs. 4.0 +/- 0.1 mL kg(-1) s(-1), and 54 6 vs. 89 14 beats min(-1)). The mean apneic stroke volume (SV) was not significantly different from the eupneic value (2.3 +/- 0.2 vs. 2.7 +/- 0.5 mL kg(-1)). Mean apneic MBF of three seals was 51% of the eupneic value. The decline in MBF during apnea was gradual, and variable in both rate and magnitude. In contrast to values previously documented in seals during forced submersions (FS), CO and SV during rest-associated apneas were maintained at levels characteristic of previously published values in similarly-sized terrestrial mammals at rest. Apneic COs of such magnitude and incomplete muscle ischemia during the apnea suggest that (1) most organs are not ischemic during rest-associated apneas, (2) the blood O-2 depletion rate is greater during rest-associated apneas than during FS, and (3) the blood O-2 store is not completely isolated from muscle during rest-associated apneas. (c) 2006 Elsevier Inc. All rights reserved.

Ponganis, PJ, Kooyman GL, Van Dam R, Lemaho Y.  1999.  Physiological responses of king penguins during simulated diving to 136 m depth. Journal of Experimental Biology. 202:2819-2822. AbstractWebsite

To evaluate blood N-2 uptake and the role of the respiratory volume (air sacs/lungs) as a N-2 and O-2 reservoir in deep-diving penguins, diving respiratory volume (V-DR), heart rate (f(H)), venous P-N2, blood volume (V-b) and hemoglobin (Hb) concentration were measured in king penguins (Aptenodytes patagonicus) during forced submersions and compressions equivalent to depths up to 136 m, V-DR was 69+/-18 ml kg(-1) (mean +/- S.D.) in 62 submersions ranging from 4.4 atmospheres absolute (ATA; 1 ATA=101 kPa) (34 m) to 14.6 ATA (136 m), Submersion f(H) averaged 30+/-7 beats min(-1) (N=18), approximately 20% of pre- and post-submersion values. Venous P-N2 values during and after submersions as deep as 11.2 ATA (102 m) were all less than 2.8 atmospheres N-2 (283 kPa) above ambient pressure, a previously measured threshold for symptomatic bubble formation. Mean V-b was 83+/-8 ml kg(-1) (N=6); [Hb] was 17.6+/-0.7 g dl(-1) (N=7), On a mass-specific basis, mean V-DR, and therefore total available N-2, is 41% of that in shallow-diving penguin species. Total body O-2 stores, calculated from measured V-DR, V-b, [Hb], muscle mass and myoglobin concentration, are 45 ml kg(-1), with 23 % in the respiratory system. This small respiratory fraction in comparison with that in shallow-diving penguins suggests a lesser reliance on the respiratory oxygen store for extended breath-holding and also a reduced uptake of nitrogen at depth.

Ponganis, PJ, Gentry RL, Ponganis EP, Ponganis KV.  1992.  Analysis of swim velocities during deep and shallow dives of two northern fur seals, Callorhinus ursinus. Marine Mammal Science. 8:69-75.   10.1111/j.1748-7692.1992.tb00126.x   AbstractWebsite

Swim velocities at 15-sec intervals and maximum depth per dive were recorded by microprocessor units on two "mixed diver" adult female northern fur seals during summer foraging trips. These records allowed comparison of swim velocities of deep (> 75 m) and shallow (< 75 m) dives. Deep dives averaged 120 m depth and 3 min duration; shallow dives averaged 30 m and 1.2 min. Mean swim velocities on deep dives were 1.8 and 1.5 m/ sec for the two animals; mean swim velocities on shallow dives were 1.5 and 1.2 m/sec. The number of minutes per hour spent diving during the deep and shallow dive patterns were 11 and 27 min, respectively. Swim velocity, and hence, relative metabolic rate, did not account for the differences in dive durations between deep and shallow dives. The long surface durations associated with deep dives, and estimates of metabolic rates for the observed swim velocities, suggest that deep dives involve significant anaerobic metabolism.

Ponganis, PJ, Meir JU, Williams CL.  2010.  Oxygen store depletion and the aerobic dive limit in emperor penguins. Aquatic Biology. 8:237-245.   10.3354/ab00216   AbstractWebsite

The aerobic dive limit (ADL), dive duration associated with the onset of post-dive blood lactate elevation, has been widely used in the interpretation of diving physiology and diving behavior. However, its physiological basis is incompletely understood, and in most studies, ADLs are simply calculated with an O(2) store/O(2) consumption formula. To better understand the ADL, research has been conducted on emperor penguins diving at an isolated dive hole. This work has revealed that O(2) stores are greater than previously estimated, and that the rate of depletion of those O(2) stores appears to be regulated primarily through a diving bradycardia and the efficiency of swimming. Blood and respiratory O(2) stores are not depleted at the 5.6 min ADL determined by post-dive blood lactate measurements. It is hypothesized that muscle, isolated from the circulation during a dive, is the primary source of lactate accumulation. To predict this 5.6 min ADL for these shallow dives at the isolated dive hole with the classic O(2) store/O(2) consumption formula, an O(2) consumption rate of 2x the predicted metabolic rate of a penguin at rest is required. In contrast, if the formula is used to calculate an ADL that is defined as the time for all consumable O(2) stores to be depleted, then a 23.1 min dive, in which final venous partial pressure of oxygen (P(O2)) was 6 mm Hg (0.8 kPa), represents such a maximum limit and demonstrates that an O(2) consumption rate of about 0.5x the predicted rate of an emperor penguin at rest is required in the formula.

Ponganis, PJ, Kooyman GL, h. Ridgway S.  2003.  Comparative Diving Physiology. Bennett and Elliott's physiology and medicine of diving. ( Brubakk AO, Neuman TS, Bennett PB, Elliott DH, Eds.).:16., Edinburgh; New York: Saunders Abstract
Ponganis, PJ, Kooyman GL, Starke LN, Kooyman CA, Kooyman TG.  1997.  Post-dive blood lactate concentrations in emperor penguins, Aptenodytes forsteri. Journal of Experimental Biology. 200:1623-1626. AbstractWebsite

In order to determine an aerobic diving limit (ADL) in emperor penguins (Aptenodytes forsteri), post-dive blood lactate concentrations were measured in penguins foraging at an isolated sea ice hole. Resting lactate concentrations were 1.2-2.7 mmol l(-1). Serial samples revealed that lactate level usually peaked within 5 min after dives and that 7-12 min was required for lactate concentrations to decrease from 5-8 mmol l(-1) to less than 2.5 mmol l(-1). Post-dive lactate level was not elevated above 3 mmol l(-1) for dives shorter than 5 min. Two-phase regression analysis revealed a transition at 5.6 min in the post-dive lactate level versus diving duration relationship. All dives longer than 7 min were associated with lactate concentrations greater than 5 mmol l(-1). We conclude that the ADL in emperor penguins ranges between 5 and 7 min. These are the first determinations of post-dive lactate concentrations in any free-diving bird and are currently the only physiological assessment of an ADL in an avian species.

Ponganis, PJ.  2019.  State of the art review: from the seaside to the bedside: insights from comparative diving physiology into respiratory, sleep and critical care. Thorax. 74:512-518.   10.1136/thoraxjnl-2018-212136   AbstractWebsite

Anatomical and physiological adaptations of animals to extreme environments provide insight into basic physiological principles and potential therapies for human disease. In that regard, the diving physiology of marine mammals and seabirds is especially relevant to pulmonary and cardiovascular function, and to the pathology and potential treatment of patients with hypoxaemia and/or ischaemia. This review highlights past and recent progress in the field of comparative diving physiology with emphasis on its potential relevance to human medicine.

Ponganis, PJ, Kooyman GL, Zornow MH, Castellini MA, Croll DA.  1990.  Cardiac output and stroke volume in swimming harbor seals. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology. 160:473-482.   10.1007/BF00258974   AbstractWebsite

Cardiac output was measured by the thermodilution method in three young harbor seals, at rest and while swimming up to the maximum effort for which they could be trained. Stroke volume was determined by counting heart rate simultaneously with determination of cardiac output. Cardiac outputs varied widely between surface breathing (7.8 and breath-holding while swimming under water (1.8 Stroke volume while at the surface was almost twice the volume while submerged. Surface cardiac output was always near maximal despite work effort, whereas submerged cardiac output gradually increased at higher work efforts. The cardiovascular performance of seals at the maximum MO2 we could induce from them is equivalent to that of the domestic goat.

Ponganis, PJ, Stockard TK, Meir JU, Williams CL, Ponganis KV, Van Dam RP, Howard R.  2007.  Returning on empty: extreme blood O-2 depletion underlies dive capacity of emperor penguins. Journal of Experimental Biology. 210:4279-4285.   10.1242/jeb.011221   AbstractWebsite

Blood gas analyses from emperor penguins (Aptenodytes forsteri) at rest, and intravascular P-O2 profiles from free-diving birds were obtained in order to examine hypoxemic tolerance and utilization of the blood O-2 store during dives. Analysis of blood samples from penguins at rest revealed arterial P(O2)s and O-2 contents of 68 +/- 7 mmHg (1 mmHg= 133.3 Pa) and 22.5 +/- 1.3 ml O-2 dl(-1) (N= 3) and venous values of 41 +/- 10 mmHg and 17.4 +/- 2.9 ml O-2 dl(-1) (N= 9). Corresponding arterial and venous Hb saturations for a hemoglobin (Hb) concentration of 18 g dl(-1) were > 91% and 70%, respectively. Analysis of P-O2 profiles obtained from birds equipped with intravascular P-O2 electrodes and backpack recorders during dives revealed that (1) the decline of the final blood P-O2 of a dive in relation to dive duration was variable, (2) final venous P-O2 values spanned a 40-mmHg range at the previously measured aerobic dive limit (ADL; dive duration associated with onset of post-dive blood lactate accumulation), (3) final arterial, venous and previously measured air sac P-O2 values were indistinguishable in longer dives, and (4) final venous P-O2 values of longer dives were as low as 1-6 mmHg during dives. Although blood O-2 is not depleted at the ADL, nearly complete depletion of the blood O-2 store occurs in longer dives. This extreme hypoxemic tolerance, which would be catastrophic in many birds and mammals, necessitates biochemical and molecular adaptations, including a shift in the O-2-Hb dissociation curve of the emperor penguin in comparison to those of most birds. A relatively higher-affinity Hb is consistent with blood P-O2 values and O-2 contents of penguins at rest.

Ponganis, PJ, Van Dam RP, Knower T, Levenson DH.  2001.  Temperature regulation in emperor penguins foraging under sea ice. Comparative Biochemistry and Physiology a-Molecular and Integrative Physiology. 129:811-820.   10.1016/s1095-6433(01)00349-x   AbstractWebsite

Inferior vena caval (IVC) and anterior abdominal (AA) temperatures were recorded in seven emperor penguins (Aptenodytes foresteri) foraging under sea ice in order to evaluate the hypothesis that hypothermia-induced metabolic suppression might extend aerobic diving time. Diving durations ranged from 1 to 12.5 min, with 39% of dives greater than the measured aerobic dive limit of 5.6 min. Anterior abdominal temperature decreased progressively throughout dives, and partially returned to pre-dive values during surface intervals. The lowest AA temperature was 19 degreesC. However, mean AA temperatures during dives did not correlate with diving durations. In six of seven penguins, only minor fluctuations in IVC temperatures occurred during diving. These changes were often elevations in temperature. In the one exception, although IVC temperatures decreased, the reductions were less than those in the anterior abdomen and did not correlate with diving durations. Because of these findings, we consider it unlikely that regional hypothermia in emperor penguins leads to a significant reduction in oxygen consumption of the major organs within the abdominal core. Rather, temperature profiles during dives are consistent with a model of regional heterothermy with conservation of core temperature, peripheral vasoconstriction, and cooling of an outer body shell. (C) 2001 Elsevier Science Inc. All rights reserved.

Ponganis, PJ, Kooyman GL, Castellini MA.  1995.  Multiple sightings of Arnouxs beaked whales along the Victoria Land coast. Marine Mammal Science. 11:247-250.   10.1111/j.1748-7692.1995.tb00523.x   AbstractWebsite
Ponganis, PJ, St Leger J, Scadeng M.  2015.  Penguin lungs and air sacs: implications for baroprotection, oxygen stores and buoyancy. Journal of Experimental Biology. 218:720-730.   10.1242/jeb.113647   AbstractWebsite

The anatomy and volume of the penguin respiratory system contribute significantly to pulmonary baroprotection, the body O-2 store, buoyancy and hence the overall diving physiology of penguins. Therefore, three-dimensional reconstructions from computerized tomographic (CT) scans of live penguins were utilized to measure lung volumes, air sac volumes, tracheobronchial volumes and total body volumes at different inflation pressures in three species with different dive capacities [Adelie (Pygoscelis adeliae), king (Aptenodytes patagonicus) and emperor (A. forsteri) penguins]. Lung volumes scaled to body mass according to published avian allometrics. Air sac volumes at 30 cm H2O (2.94 kPa) inflation pressure, the assumed maximum volume possible prior to deep dives, were two to three times allometric air sac predictions and also two to three times previously determined end-of-dive total air volumes. Although it is unknown whether penguins inhale to such high volumes prior to dives, these values were supported by (a) body density/buoyancy calculations, (b) prior air volume measurements in free-diving ducks and (c) previous suggestions that penguins may exhale air prior to the final portions of deep dives. Based upon air capillary volumes, parabronchial volumes and tracheobronchial volumes estimated from the measured lung/airway volumes and the only available morphometry study of a penguin lung, the presumed maximum air sac volumes resulted in air sac volume to air capillary/parabronchial/tracheobronchial volume ratios that were not large enough to prevent barotrauma to the non-collapsing, rigid air capillaries during the deepest dives of all three species, and during many routine dives of king and emperor penguins. We conclude that volume reduction of airways and lung air spaces, via compression, constriction or blood engorgement, must occur to provide pulmonary baroprotection at depth. It is also possible that relative air capillary and parabronchial volumes are smaller in these deeper-diving species than in the spheniscid penguin of the morphometry study. If penguins do inhale to this maximum air sac volume prior to their deepest dives, the magnitude and distribution of the body O-2 store would change considerably. In emperor penguins, total body O-2 would increase by 75%, and the respiratory fraction would increase from 33% to 61%. We emphasize that the maximum pre-dive respiratory air volume is still unknown in penguins. However, even lesser increases in air sac volume prior to a dive would still significantly increase the O-2 store. More refined evaluations of the respiratory O-2 store and baroprotective mechanisms in penguins await further investigation of species-specific lung morphometry, start-of-dive air volumes and body buoyancy, and the possibility of air exhalation during dives.

Ponganis, PJ, Pierce RW.  1978.  Muscle metabolic profiles and fiber-type composition in some marine mammals. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology. 59:99-102.   10.1016/0305-0491(78)90187-6   AbstractWebsite

1. Hexokinase, lactate dehydrogenase, 3-hydroxyacyl-CoA dehydrogenase, and malate dehydrogenase activities as well as fiber type composition were determined in skeletal muscles of the California sea lion (Zalophus californianus), the sea otter (Enhydra lutris), and the Pacific white-sided dolphin (Lagenorhynchusobliquidens).2. The subcutaneous muscle of the sea lion had intermediate glycolytic and oxidative enzyme activities.3. The locomotory muscles examined in the otter and porpoise did not contain a single predominant fiber type, but did have a well developed oxidative as well as glycolytic metabolic capacity.

Ponganis, PJ, Stockard TK, Levenson DH, Berg L, Baranov EA.  2006.  Intravascular pressure profiles in elephant seals: Hypotheses on the caval sphincter, extradural vein and venous return to the heart. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology. 145:123-130.   10.1016/j.cbpa.2006.05.012   AbstractWebsite

In order to evaluate bemodynamics in the complex vascular system of phocid seals, intravascular pressure profiles were measured during periods of rest-associated apnea in young elephant seals (Mirounga angustirostris). There were no significant differences between apneic and eupneic mean arterial pressures. During apnea, venous pressure profiles (pulmonary artery, thoracic portion of the vena cava (thoracic vena cava), extradural vein, and hepatic sinus) demonstrated only minor, transient fluctuations. During eupnea, all venous pressure profiles were dominated by respiratory fluctuations. During inspiration, pressures in the thoracic vena cava and extradural vein decreased -9 to -21 mm Hg, and -9 to -17 mm Hg, respectively. In contrast, hepatic sinus pressure increased 2-6 mm Hg during inspiration. Nearly constant hepatic sinus and intrathoracic vascular pressure profiles during the breath-hold period are consistent with incomplete constriction of the caval sphincter during these rest-associated apneas. During eupnea, negative inspiratory intravascular pressures in the chest ("the respiratory pump") should augment venous return via both the venae cavae and the extradural. vein. It is hypothesized that, in addition to the venae cavae, the prominent para-caval venous system of phocid seals (i.e., the extradural vein) is necessary to allow adequate venous return for maintenance of high cardiac outputs and blood pressure during eupnea. (c) 2006 Elsevier Inc. All rights reserved.

Ponganis, PJ, Starke LN, Horning M, Kooyman GL.  1999.  Development of diving capacity in emperor penguins. Journal of Experimental Biology. 202:781-786. AbstractWebsite

To compare the diving capacities of juvenile and adult emperor penguins Aptenodytes forsteri, and to determine the physiological variables underlying the diving ability of juveniles, we monitored diving activity in juvenile penguins fitted with satellite-linked time/depth recorders and examined developmental changes in body mass (M-b), hemoglobin concentration, myoglobin (Mb) content and muscle citrate synthase and lactate dehydrogenase activities, Diving depth, diving duration and time-at-depth histograms were obtained from two fledged juveniles during the first 2.5 months after their departure from the Cape Washingon colony in the Ross Sea, Antarctica. During this period, values of all three diving variables increased progressively. After 8-10 weeks at sea, 24-41% of transmitted maximum diving depths were between 80 and 200 m, Although most dives lasted less than 2 min during the 2 month period, 8-25% of transmitted dives in the last 2 weeks lasted 2-4 min. These values are lower than those previously recorded in adults during foraging trips. Of the physiological variables examined during chick and juvenile development, only M-b and Mb content did not approach adult values, In both near-hedge chicks and juveniles, Mb was 50-60% of adult values and Mb content was 24-31% of adult values. This suggests that the increase in diving capacity of juveniles at sea will be most dependent on changes in these factors.

Ponganis, PJ, Kooyman GL, Sartoris D, Jobsis P.  1992.  Pinniped splenic volumes. American Journal of Physiology. 262:R322-R325. AbstractWebsite

Splenic volume was measured by computerized axial tomography in three harbor seals (Phoca vitulina) and two California sea lions (Zalophus californianus). Volumes ranged from 228 to 679 ml, representing 0.8-3.0% of calculated percentage body mass. Despite possible variation in the state of splenic contraction during the examination, these values are in the upper range of reported mammalian splenic volumes (as % of body mass). This reinforces the pinniped splenic erythrocyte storage concept.

Ponganis, PJ, Welch TJ, Welch LS, Stockard TK.  2010.  Myoglobin production in emperor penguins. Journal of Experimental Biology. 213:1901-1906.   10.1242/jeb.042093   AbstractWebsite

Increased oxygen storage is essential to the diving capacities of marine mammals and seabirds. However, the molecular mechanisms underlying this adaptation are unknown. Myoglobin (Mb) and Mb mRNA concentrations were analyzed in emperor penguin (Aptenodytes forsteri) adults and chicks with spectrophotometric and RNase protection assays to evaluate production of their large Mb-bound O(2) stores. Mean pectoral Mb concentration and Mb mRNA content increased throughout the pre-fledging period and were 15-fold and 3-fold greater, respectively, in adults than in 3.5 month old chicks. Mean Mb concentration in 5.9 month old juveniles was 2.7 +/- 0.4 g 100 g(-1) muscle (44% that of wild adults), and in adults that had been captive all their lives it was 3.7 +/- 0.1 g 100 g(-1) muscle. The Mb and Mb mRNA data are consistent with regulation of Mb production at the level of transcription as in other animals. Significant Mb and Mb mRNA production occurred in chicks and young juveniles even without any diving activity. The further increase in adult Mb concentrations appears to require the exercise/hypoxia of diving because Mb concentration in captive, non-diving adults only reached 60% of that of wild adults. The much greater relative increase in Mb concentration than in Mb mRNA content between young chicks and adults suggests that there is not a simple 1:1 relationship between Mb mRNA content and Mb concentration. Nutritional limitation in young chicks and post-transcriptional regulation of Mb concentration may also be involved.

Ponganis, PJ, Van Dam RP, Levenson DH, Knower T, Ponganis KV, Marshall G.  2003.  Regional heterothermy and conservation of core temperature in emperor penguins diving under sea ice. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology. 135:477-487.   10.1016/s1095-6433(03)00133-8   AbstractWebsite

Temperatures were recorded at several body sites in emperor penguins (Aptenodytes forsteri) diving at an isolated dive hole in order to document temperature profiles during diving and to evaluate the role of hypothermia in this well-studied model of penguin diving physiology. Grand mean temperatures (+/-S.E.) in central body sites during dives were: stomach: 37.1 +/- 0.2 degreesC (n = 101 dives in five birds), pectoral muscle: 37.8 +/- 0.1 degreesC (n = 71 dives in three birds) and axillary/brachial veins: 37.9 +/- 0.1 degreesC (n = 97 dives in three birds). Mean diving temperature and duration correlated negatively at only one site in one bird (femoral vein, r = -0.59, P < 0.05; range < 1 degreesC). In contrast, grand mean temperatures in the wing vein, foot vein and lumbar subcutaneous tissue during dives were 7.6 +/- 0.7 degreesC (n = 157 dives in three birds), 20.2 +/- 1.2 degreesC (n = 69 in three birds) and 35.2 +/- 0.2 degreesC (n = 261 in six birds), respectively. Mean limb temperature during dives negatively correlated with diving duration in all six birds (r = -0.29 to -0.60, P < 0.05). In two of six birds, mean diving subcutaneous temperature negatively correlated with diving duration (r = -0.49 and -0.78, P < 0.05). Sub-feather temperatures decreased from 31 to 35 T during rest periods to a grand mean of 15.0 +/- 0.7 degreesC during 68 dives of three birds; mean diving temperature and duration correlated negatively in one bird (r = -0.42, P < 0.05). In general, pectoral, deep venous and even stomach temperatures during diving reflected previously measured vena caval temperatures of 37-39 degreesC more closely than the anterior abdominal temperatures (19-30 degreesC) recently recorded in diving emperors. Although prey ingestion can result in cooling in the stomach, these findings and the lack of negative correlations between internal temperatures and diving duration do not support a role for hypothermia-induced metabolic suppression of the abdominal organs as a mechanism of extension of aerobic dive time in emperor penguins diving at the isolated dive hole. Such high temperatures within the body and the observed decreases in limb, anterior abdomen, subcutaneous and sub-feather temperatures are consistent with preservation of core temperature and cooling of an outer body shell secondary to peripheral vasoconstriction, decreased insulation of the feather layer, and conductive/convective heat loss to the water environment during the diving of these emperor penguins. (C) 2003 Elsevier Science Inc. All fights reserved.

Ponganis, PJ, Kooyman GL, Winter LM, Starke LN.  1997.  Heart rate and plasma lactate responses during submerged swimming and trained diving in California sea lions, Zalophus californianus. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology. 167:9-16.   10.1007/s003600050042   AbstractWebsite

California sea lions, Zalophus californianus, were trained to elicit maximum voluntary breath holds during stationary underwater targeting, submerged swimming, and trained diving. Lowest heart rate during rest periods was 57 bpm. The heart rate profiles in all three protocols were dominated by a bradycardia of 20-50 bpm, and demonstrated that otariid diving heart rates were at or below resting heart rate. Venous blood samples were collected after submerged swimming periods of 1-3 min. Plasma lactate began to increase only after 2.3-min submersions. This rise in lactate and our inability to train sea lions to dive or swim submerged for periods longer than 3 min lead us to conclude that an aerobic limit had been reached. Due to the similarity of heart rate responses and swimming velocities recorded during submerged swimming and trained diving, this 2.3-min limit should approximate the aerobic dive limit in these 40-kg sea lions. Total body O-2 stores, based on measurements of blood and muscle O-2 stores in these animals, and prior lung O-2 Store analyses, were 37-43 ml O-2 kg(-1). The aerobic dive limit, calculated with these O-2 stores and prior measurements of at-sea metabolic rates of sea lions, is 1.8-2 min, similar to that measured by the change in post-submersion lactate concentration.

Ponganis, PJ, Ponganis EP, Ponganis KV, Kooyman GL, Gentry RL, Trillmich F.  1990.  Swimming velocities in otariids. Canadian Journal of Zoology-Revue Canadienne De Zoologie. 68:2105-2112.   10.1139/z90-293   AbstractWebsite

Velocities during surface swimming and diving were measured with microprocessor recorders in four otariid species: northern fur seals (Callorhinusursinus), Galapagos sea lions (Zalophuscalifornianuswollebaeki), Galapagos fur seals (Arctocephalusgalapagoensis), and Hooker's sea lions (Phocarctoshookeri). Mean surface swimming velocities ranged from 0.6 to 1.9 m/s. Transit distances to feeding sites (1.2–90 km) were calculated using these velocities. Dive velocities, recorded every 15 s, ranged from 0.9 to 1.9 m/s. These velocities were consistent with calculated minimal cost of transport velocities in the smaller species. Using time partitioning, the metabolic cost of a northern fur seal foraging trip is estimated on the basis of recorded velocities and their calculated energy costs. This value is within 6% of that previously made with doubly labeled water techniques.

Ponganis, PJ, Kreutzer U, Stockard TK, Lin PC, Sailasuta N, Tran TK, Hurd R, Jue T.  2008.  Blood flow and metabolic regulation in seal muscle during apnea. Journal of Experimental Biology. 211:3323-3332.   10.1242/jeb.018887   AbstractWebsite

In order to examine myoglobin (Mb) function and metabolic responses of seal muscle during progressive ischemia and hypoxemia, Mb saturation and high-energy phosphate levels were monitored with NMR spectroscopy during sleep apnea in elephant seals (Mirounga angustirostris). Muscle blood flow (MBF) was measured with laser-Doppler flowmetry (LDF). During six, spontaneous, 8-12 min apneas of an unrestrained juvenile seal, apneic MBF decreased to 46 +/- 10% of the mean eupneic MBF. By the end of apnea, MBF reached 31 +/- 8% of the eupneic value. The t(1/2) for 90% decline in apneic MBF was 1.9 +/- 1.2 min. The initial post-apneic peak in MBF occurred within 0.20 +/- 0.04 min after the start of eupnea. NMR measurements revealed that Mb desaturated rapidly from its eupenic resting level to a lower steady state value within 4 min after the onset of apnea at rates between 1.7 +/- 1.0 and 3.8 +/- 1.5% min(-1), which corresponded to a muscle O(2) depletion rate of 1-2.3 ml O(2)kg(-1) min(-1). High-energy phosphate levels did not change with apnea. During the transition from apnea to eupnea, Mb resaturated to 95% of its resting level within the first minute. Despite the high Mb concentration in seal muscle, experiments detected Mb diffusing with a translational diffusion coefficient of 4.5 x 10(-7) cm(2) s(-1), consistent with the value observed in rat myocardium. Equipoise P(O2) analysis revealed that Mb is the predominant intracellular O(2) transporter in elephant seals during eupnea and apnea.

Ponganis, PJ.  2002.  Circulatory System. Encyclopedia of marine mammals. ( Perrin WF, Würsig BG, Thewissen J, Eds.).:229-232., San Diego: Academic Press Abstract

This encyclopedia is a comprehensive, scientifically accurate work devoted to all aspects of marine mammals, including their anatomy, physiology, evolution, behavior, reproduction, ecology, and disease, as well as issues of exploitation, conservation, and management.

Ponganis, PJ, Costello ML, Starke LN, MathieuCostello O, Kooyman GL.  1997.  Structural and biochemical characteristics of locomotory muscles of emperor penguins, Aptenodytes forsteri. Respiration Physiology. 109:73-80.   10.1016/s0034-5687(97)84031-5   AbstractWebsite

Structural and biochemical characteristics of the primary muscles used for swimming (pectoralis, PEC and supracoracoideus, SC) were compared to those of leg muscles in emperor penguins (Aptenodytes forsteri). The mass of PEG-SC was four times that of the leg musculature, and mitochondrial volume density in PEC and SC (4%) was two-thirds that in sartorius (S) and gastrocnemius. The differences in muscle mass and mitochondrial density yielded a 2.2-fold greater total mitochondrial content in PEG-SC than leg muscles, which appears to account for the 1.8-fold greater whole-body highest oxygen consumption previously recorded in emperor penguins during swimming compared to walking. Calculation of maximal mitochondrial O-2 consumption in PEG-SC and leg muscle yielded values of 5.8-6.9 mi O-2 ml(-1) min(-1), which are similar to those in locomotory muscles of most mammals and birds. A distinct feature of emperor penguin muscle was its myoglobin content, with concentrations in PEG-SC (6.4 g 100 g(-1)) among the highest measured in any species. This resulted in a PEG-SC O-2 store greater than that of the entire blood. In addition, ratios of myoglobin content to mitochondrial volume density and to citrate synthase activity were 4.4 and 2.5 times greater in PEG than in S, indicative of the significant role of myoglobin in the adaptation of muscle to cardiovascular adjustments during diving. (C) 1997 Elsevier Science B.V.

Ponganis, PJ, McDonald BI, Tift MS, Williams CL.  2017.  Heart rate regulation in diving sea lions: the vagus nerve rules. Journal of Experimental Biology. 220:1372-1381.   10.1242/jeb.146779   AbstractWebsite

Recent publications have emphasized the potential generation of morbid cardiac arrhythmias secondary to autonomic conflict in diving marine mammals. Such conflict, as typified by cardiovascular responses to cold water immersion in humans, has been proposed to result from exercise-related activation of cardiac sympathetic fibers to increase heart rate, combined with depth-related changes in parasympathetic tone to decrease heart rate. After reviewing the marine mammal literature and evaluating heart rate profiles of diving California sea lions (Zalophus californianus), we present an alternative interpretation of heart rate regulation that de-emphasizes the concept of autonomic conflict and the risk of morbid arrhythmias in marine mammals. We hypothesize that: (1) both the sympathetic cardiac accelerator fibers and the peripheral sympathetic vasomotor fibers are activated during dives even without exercise, and their activities are elevated at the lowest heart rates in a dive when vasoconstriction is maximal, (2) in diving animals, parasympathetic cardiac tone via the vagus nerve dominates over sympathetic cardiac tone during all phases of the dive, thus producing the bradycardia, (3) adjustment in vagal activity, which may be affected by many inputs, including exercise, is the primary regulator of heart rate and heart rate fluctuations during diving, and (4) heart beat fluctuations (benign arrhythmias) are common in marine mammals. Consistent with the literature and with these hypotheses, we believe that the generation of morbid arrhythmias because of exercise or stress during dives is unlikely in marine mammals.

Ponganis, PJ, Gentry RL, Ponganis EP, Ponganis K.  1989.  Analysis of swimming velocity in deep and shallow dives of two northern fur seals, Callorhinus ursinus. Proceedings of the Eighth Biennial Conference on the Biology of Marine Mammals. , Pacific Grove, Calif. Abstract