Export 13 results:
Sort by: Author [ Title  (Asc)] Type Year
A [B] C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Ponganis, PJ, Kooyman GL, Baranov EA, Thorson PH, Stewart BS.  1997.  The aerobic submersion limit of Baikal seals, Phoca sibirica. Canadian Journal of Zoology-Revue Canadienne De Zoologie. 75:1323-1327.   10.1139/z97-756   AbstractWebsite

An aerobic dive limit (ADL), the diving duration beyond which postdive lactate concentration increases above the resting level, has been estimated theoretically for many species. Such calculations have been based on an oxygen store/diving metabolic rate (MR) equation. Until now, an ADL has been determined empirically from measurements of blood lactate concentration only in the Weddell seal, Leptonychotes weddellii. We measured post-submergence plasma lactate concentrations during spontaneous voluntary submersions of three captive adult Baikal seals (Phoca sibirica). Two-phase regression analysis revealed a transition in the lactate concentration - submersion duration relationship after the animal had been diving for 15 min. Data collected in prior studies on oxygen stores and submersion metabolic rates of Baikal seals yielded a calculated aerobic limit of 16 min. As in Weddell seals, the empirically determined aerobic limit was very similar to the theoretical limit. Furthermore, most diving durations recorded during recent studies of free-ranging Baikal seals are under this limit. These data support the concept of an ADL and its estimation by means of an oxygen store/diving MR calculation.

Stockard, TK, Levenson DH, Berg L, Fransioli JR, Baranov EA, Ponganis PJ.  2007.  Blood oxygen depletion during rest-associated apneas of northern elephant seals (Mirounga angustirostris). Journal of Experimental Biology. 210:2607-2617.   10.1242/jeb.008078   AbstractWebsite

Blood gases (P-O2, P-CO2, pH), oxygen content, hematocrit and hemoglobin concentration were measured during rest-associated apneas of nine juvenile northern elephant seals. In conjunction with blood volume determinations, these data were used to determine total blood oxygen stores, the rate and magnitude of blood O-2 depletion, the contribution of the blood O-2 store to apneic metabolic rate, and the egree of hypoxemia that occurs during these breath-holds. Mean body mass was 66 +/- 9.7 kg (+/- s.d.); blood volume was 196 +/- 20 ml kg(-1); and hemoglobin concentration was 23.5 +/- 1.5 g dl(-1). Rest apneas ranged in duration from 3.1 to 10.9 min. Arterial P-O2 declined exponentially during apnea, ranging between a maximum of 108 mmHg and a minimum of 18 mmHg after a 9.1 min breath-hold. Venous P-O2 values were indistinguishable from arterial values after the first minute of apnea; the lowest venous P-O2 recorded was 15 mmHg after a 7.8 min apnea. O-2 contents were also similar between the arterial and venous systems, declining linearly at rates of 2.3 and 2.0 ml O-2 dl(-1) min (-1), respectively, from mean initial values of 27.2 and 26.0 ml O-2 dl(-1). These blood O-2 depletion rates are approximately twice the reported values during forced submersion and are consistent with maintenance of previously measured high cardiac outputs during rest-associated breath-holds. During a typical 7-min apnea, seals consumed, on average, 56% of the initial blood O-2 store of 52 ml O-2 kg(-1); this contributed 4.2 ml O-2 kg(-1) min(-1) to total body metabolic rate during the breath-hold. Extreme hypoxemic tolerance in these seals was demonstrated by arterial P-O2 values during late apnea that were less than human thresholds for shallow-water blackout. Despite such low P-O2s, there was no evidence of significant anaerobic metabolism, as changes in blood pH were minimal and attributable to increased P-CO2. These findings and the previously reported lack of lactate accumulation during these breath- holds are consistent with the maintenance of aerobic metabolism even at low oxygen tensions during rest- associated apneas. Such hypoxemic tolerance is necessary in order to allow dissociation of O-2 from hemoglobin and provide effective utilization of the blood O-2 store.

Ponganis, PJ, Stockard TK, Levenson DH, Berg L, Baranov EA.  2006.  Cardiac output and muscle blood flow during rest-associated apneas of elephant seals. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology. 144:105-111.   10.1016/j.cbpa.2006.02.009   AbstractWebsite

In order to evaluate hemodynamics and blood flow during rest-associated apnea in young elephant seals (Mirounga angustirostris), cardiac outputs (CO, thermodilution), heart rates (HR), and muscle blood flow (MBF, laser Doppler flowmetry) were measured.. Mean apneic COs and HRs of three seals were 46% and 39% less than eupneic values, respectively (2.1 +/- 0.3 vs. 4.0 +/- 0.1 mL kg(-1) s(-1), and 54 6 vs. 89 14 beats min(-1)). The mean apneic stroke volume (SV) was not significantly different from the eupneic value (2.3 +/- 0.2 vs. 2.7 +/- 0.5 mL kg(-1)). Mean apneic MBF of three seals was 51% of the eupneic value. The decline in MBF during apnea was gradual, and variable in both rate and magnitude. In contrast to values previously documented in seals during forced submersions (FS), CO and SV during rest-associated apneas were maintained at levels characteristic of previously published values in similarly-sized terrestrial mammals at rest. Apneic COs of such magnitude and incomplete muscle ischemia during the apnea suggest that (1) most organs are not ischemic during rest-associated apneas, (2) the blood O-2 depletion rate is greater during rest-associated apneas than during FS, and (3) the blood O-2 store is not completely isolated from muscle during rest-associated apneas. (c) 2006 Elsevier Inc. All rights reserved.

Ponganis, PJ, Kooyman GL, h. Ridgway S.  2003.  Comparative Diving Physiology. Bennett and Elliott's physiology and medicine of diving. ( Brubakk AO, Neuman TS, Bennett PB, Elliott DH, Eds.).:16., Edinburgh; New York: Saunders Abstract
Ponganis, PJ, Kooyman GL.  1990.  Diving physiology of penguins. Acta XX Congressus Internationalis Ornithologici, Christchurch, New Zealand, 2-9 December 1990. ( Butler PJ, Jones DR, Eds.).:6., Wellington, N.Z.: New Zealand Ornithological Congress Trust Board Abstract
Kooyman, GL, Ainley DG, Ballard G, Ponganis PJ.  2007.  Effects of giant icebergs on two emperor penguin colonies in the Ross Sea, Antarctica. Antarctic Science. 19:31-38.   10.1017/s0954102007000065   AbstractWebsite

The arrival in January 2001 in the south-west Ross Sea of two giant icebergs, C16 and Bl5A, subsequently had dramatic affects on two emperor penguin colonies. B15A collided with the north-west tongue of the Ross Ice Shelf at Cape Crozier, Ross Island, in the following months and destroyed the penguins' nesting habitat. The colony totally failed in 2001, and years after, with the icebergs still in place, exhibited reduced production that ranged from 0 to 40% of the 1201 chicks produced in 2000. At Beaufort Island, 70 km NW of Crozier, chick production declined to 6% of the 2000 count by 2004. Collisions with the Ross Ice Shelf at Cape Crozier caused incubating adults to be crushed, trapped in ravines, or to abandon the colony and, since 2001, to occupy poorer habitat. The icebergs separated Beaufort Island from the Ross Sea Polynya, formerly an easy route to feeding and wintering areas. This episode has provided a glimpse of events which have probably occurred infrequently since the West Antarctic Ice Sheet began to retreat 12 000 years ago. The results allow assessment of recovery rates for one colony decimated by both adult and chick mortality, and the other colony by adult abandonment and chick mortality.

Barber-Meyer, SM, Kooyman GL, Ponganis PJ.  2007.  Estimating the relative abundance of emperor penguins at inaccessible colonies using satellite imagery. Polar Biology. 30:1565-1570.   10.1007/s00300-007-0317-8   AbstractWebsite

Emperor penguin (Aptenodytes forsteri) populations are useful environmental indicators due to the bird's extreme reliance on sea ice. We used remote sensing technology to estimate relative adult bird abundance at two inaccessible emperor penguin colonies in the Ross Sea, Antarctica. We performed supervised classification of 12 panchromatic satellite images of the seven known Ross Sea colonies. We used regression to predict adult bird counts at the inaccessible colonies by relating the number of pixels classified as "penguin" in the satellite images of the accessible colonies to corresponding known adult bird counts from aerial photographs or ground counts. While our analysis was hampered by excessive guano and shadows, we used satellite imagery to differentiate between relatively small (< 3,000 adult birds) and larger colonies (> 5,000 adult birds). Remote sensing technology is logistically less intense and less costly than aerial or ground censuses when the objective is to document penguin presence and/or large emperor penguin population changes (e.g., catastrophic changes). Improvements expected soon in the resolution of the satellite images should allow for more accurate abundance estimates.

Blight, LK, Ainley DG, Ackley SF, Ballard G, Ballerini T, Brownell RL, Cheng CHC, Chiantore M, Costa D, Coulter MC, Dayton P, Devries AL, Dunbar R, Earle S, Eastman JT, Emslie SD, Evans CW, Garrott RA, Kim S, Kooyman G, Lescroel A, Lizotte M, Massaro M, Olmastroni S, Ponganis PJ, Russell J, Siniff DB, Smith WO, Stewart BS, Stirling I, Willis J, Wilson P, Woehler EJ.  2010.  Fishing for data in the Ross Sea. Science. 330:1316-1316.   10.1126/science.330.6009.1316   AbstractWebsite
Cristofari, R, Bertorelle G, Ancel A, Benazzo A, Lemaho Y, Ponganis PJ, Stenseth NC, Trathan PN, Whittington JD, Zanetti E, Zitterbart DP, Le Bohec C, Trucchi E.  2016.  Full circumpolar migration ensures evolutionary unity in the Emperor penguin. Nature Communications. 7   10.1038/ncomms11842   AbstractWebsite

Defining reliable demographic models is essential to understand the threats of ongoing environmental change. Yet, in the most remote and threatened areas, models are often based on the survey of a single population, assuming stationarity and independence in population responses. This is the case for the Emperor penguin Aptenodytes forsteri, a flagship Antarctic species that may be at high risk continent-wide before 2100. Here, using genome-wide data from the whole Antarctic continent, we reveal that this top-predator is organized as one single global population with a shared demography since the late Quaternary. We refute the view of the local population as a relevant demographic unit, and highlight that (i) robust extinction risk estimations are only possible by including dispersal rates and (ii) colony-scaled population size is rather indicative of local stochastic events, whereas the species' response to global environmental change is likely to follow a shared evolutionary trajectory.

Ponganis, PJ, Stockard TK, Levenson DH, Berg L, Baranov EA.  2006.  Intravascular pressure profiles in elephant seals: Hypotheses on the caval sphincter, extradural vein and venous return to the heart. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology. 145:123-130.   10.1016/j.cbpa.2006.05.012   AbstractWebsite

In order to evaluate bemodynamics in the complex vascular system of phocid seals, intravascular pressure profiles were measured during periods of rest-associated apnea in young elephant seals (Mirounga angustirostris). There were no significant differences between apneic and eupneic mean arterial pressures. During apnea, venous pressure profiles (pulmonary artery, thoracic portion of the vena cava (thoracic vena cava), extradural vein, and hepatic sinus) demonstrated only minor, transient fluctuations. During eupnea, all venous pressure profiles were dominated by respiratory fluctuations. During inspiration, pressures in the thoracic vena cava and extradural vein decreased -9 to -21 mm Hg, and -9 to -17 mm Hg, respectively. In contrast, hepatic sinus pressure increased 2-6 mm Hg during inspiration. Nearly constant hepatic sinus and intrathoracic vascular pressure profiles during the breath-hold period are consistent with incomplete constriction of the caval sphincter during these rest-associated apneas. During eupnea, negative inspiratory intravascular pressures in the chest ("the respiratory pump") should augment venous return via both the venae cavae and the extradural. vein. It is hypothesized that, in addition to the venae cavae, the prominent para-caval venous system of phocid seals (i.e., the extradural vein) is necessary to allow adequate venous return for maintenance of high cardiac outputs and blood pressure during eupnea. (c) 2006 Elsevier Inc. All rights reserved.

Sato, K, Watanuki Y, Takahashi A, Miller PJO, Tanaka H, Kawabe R, Ponganis PJ, Handrich Y, Akamatsu T, Watanabe Y, Mitani Y, Costa DP, Bost CA, Aoki K, Amano M, Trathan P, Shapiro A, Naito Y.  2007.  Stroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceans. Proceedings of the Royal Society B-Biological Sciences. 274:471-477.   10.1098/rspb.2006.0005   AbstractWebsite

It is obvious, at least qualitatively, that small animals move their locomotory apparatus faster than large animals: small insects move their wings invisibly fast, while large birds flap their wings slowly. However, quantitative observations have been difficult to obtain from free-ranging swimming animals. We surveyed the swimming behaviour of animals ranging from 0.5 kg seabirds to 30 000 kg sperm whales using animal-borne accelerometers. Dominant stroke cycle frequencies of swimming specialist seabirds and marine mammals were proportional to mass(-0.29) (R-2=0.99, n=17 groups), while propulsive swimming speeds of 1-2 m s(-1) were independent of body size. This scaling relationship, obtained from breath-hold divers expected to swim optimally to conserve oxygen, does not agree with recent theoretical predictions for optimal swimming. Seabirds that use their wings for both swimming and flying stroked at a lower frequency than other swimming specialists of the same size, suggesting a morphological trade-off with wing size and stroke frequency representing a compromise. In contrast, foot-propelled diving birds such as shags had similar stroke frequencies as other swimming specialists. These results suggest that muscle characteristics may constrain swimming during cruising travel, with convergence among diving specialists in the proportions and contraction rates of propulsive muscles.

Spragg, RG, Ponganis PJ, Marsh JJ, Rau GA, Bernhard W.  2004.  Surfactant from diving aquatic mammals. Journal of Applied Physiology. 96:1626-1632.   10.1152/japplphysiol.00898.2003   AbstractWebsite

Diving mammals that descend to depths of 50 - 70 m or greater fully collapse the gas exchanging portions of their lungs and then reexpand these areas with ascent. To investigate whether these animals may have evolved a uniquely developed surfactant system to facilitate repetitive alveolar collapse and expansion, we have analyzed surfactant in bronchoalveolar lavage fluid (BAL) obtained from nine pinnipeds and from pigs and humans. In contrast to BAL from terrestrial mammals, BAL from pinnipeds has a higher concentration of phospholipid and relatively more fluidic phosphatidylcholine molecular species, perhaps to facilitate rapid spreading during alveolar reexpansion. Normalized concentrations of hydrophobic surfactant proteins B and C were not significantly different among pinnipeds and terrestrial mammals by immunologic assay, but separation of proteins by gel electrophoresis indicated a greater content of surfactant protein B in elephant seal surfactant than in human surfactant. Remarkably, surfactant from the deepest diving pinnipeds produced moderately elevated in vitro minimum surface tension measurements, a finding not explained by the presence of protein or neutral lipid inhibitors. Further study of the composition and function of pinniped surfactants may contribute to the design of optimized therapeutic surfactants.

Barber-Meyer, SM, Kooyman GL, Ponganis PJ.  2008.  Trends in western Ross Sea emperor penguin chick abundances and their relationships to climate. Antarctic Science. 20:3-11.   10.1017/s0954102007000673   AbstractWebsite

The emperor penguin (Aptenodytes forsteri) is extremely dependent on the extent and stability of sea ice, which may make the species particularly susceptible to environmental change. In order to appraise the stability of the emperor penguin populations at six colonies in the western Ross Sea, we used linear regression analysis to evaluate chick abundance trends (1983-2005) and Pearson's r correlation to assess their relation to two local and two large-scale climate variables. We detected only one significant abundance trend; the Cape Roget colony increased from 1983 to 1996 (n = 6). Higher coefficients of variation in chick abundances at smaller colonies (Cape Crozier, Beaufort Island, Franklin Island) suggest that such colonies occupy marginal habitat, and are more susceptible to environmental change. We determined chick abundance to be most often correlated with local Ross Sea climate variables (sea ice extent and sea surface temperature), but not in consistent patterns across the colonies. We propose that chick abundance is most impacted by fine scale sea ice extent and local weather events, which are best evaluated by on-site assessments. We did not find sufficient evidence to reject the hypothesis that the overall emperor penguin population in the Ross Sea was stable during this period.