Surfactant from diving aquatic mammals

Spragg, RG, Ponganis PJ, Marsh JJ, Rau GA, Bernhard W.  2004.  Surfactant from diving aquatic mammals. Journal of Applied Physiology. 96:1626-1632.

Date Published:



acute lung, bronchoalveolar lavage fluid, elisa technique, harbor seals, injury, mirounga-angustirostris, nitrogen, phospholipid, Pinniped, proteins, pulmonary surfactant, quantification, sea lion, seal, surfactant protein, tensions, thin-layer-chromatography


Diving mammals that descend to depths of 50 - 70 m or greater fully collapse the gas exchanging portions of their lungs and then reexpand these areas with ascent. To investigate whether these animals may have evolved a uniquely developed surfactant system to facilitate repetitive alveolar collapse and expansion, we have analyzed surfactant in bronchoalveolar lavage fluid (BAL) obtained from nine pinnipeds and from pigs and humans. In contrast to BAL from terrestrial mammals, BAL from pinnipeds has a higher concentration of phospholipid and relatively more fluidic phosphatidylcholine molecular species, perhaps to facilitate rapid spreading during alveolar reexpansion. Normalized concentrations of hydrophobic surfactant proteins B and C were not significantly different among pinnipeds and terrestrial mammals by immunologic assay, but separation of proteins by gel electrophoresis indicated a greater content of surfactant protein B in elephant seal surfactant than in human surfactant. Remarkably, surfactant from the deepest diving pinnipeds produced moderately elevated in vitro minimum surface tension measurements, a finding not explained by the presence of protein or neutral lipid inhibitors. Further study of the composition and function of pinniped surfactants may contribute to the design of optimized therapeutic surfactants.