Oxygen store depletion and the aerobic dive limit in emperor penguins

Citation:
Ponganis, PJ, Meir JU, Williams CL.  2010.  Oxygen store depletion and the aerobic dive limit in emperor penguins. Aquatic Biology. 8:237-245.

Keywords:

adelie penguins, ADL, aerobic dive limit, aptenodytes-patagonicus, blood-flow, diving behavior, emperor penguins, foraging behavior, heart rate, heart-rate, king penguins, lactate, metabolic-regulation, oxygen, skeletal-muscle, temperature, weddell seals

Abstract:

The aerobic dive limit (ADL), dive duration associated with the onset of post-dive blood lactate elevation, has been widely used in the interpretation of diving physiology and diving behavior. However, its physiological basis is incompletely understood, and in most studies, ADLs are simply calculated with an O(2) store/O(2) consumption formula. To better understand the ADL, research has been conducted on emperor penguins diving at an isolated dive hole. This work has revealed that O(2) stores are greater than previously estimated, and that the rate of depletion of those O(2) stores appears to be regulated primarily through a diving bradycardia and the efficiency of swimming. Blood and respiratory O(2) stores are not depleted at the 5.6 min ADL determined by post-dive blood lactate measurements. It is hypothesized that muscle, isolated from the circulation during a dive, is the primary source of lactate accumulation. To predict this 5.6 min ADL for these shallow dives at the isolated dive hole with the classic O(2) store/O(2) consumption formula, an O(2) consumption rate of 2x the predicted metabolic rate of a penguin at rest is required. In contrast, if the formula is used to calculate an ADL that is defined as the time for all consumable O(2) stores to be depleted, then a 23.1 min dive, in which final venous partial pressure of oxygen (P(O2)) was 6 mm Hg (0.8 kPa), represents such a maximum limit and demonstrates that an O(2) consumption rate of about 0.5x the predicted rate of an emperor penguin at rest is required in the formula.

Notes:

n/a

Website

DOI:

10.3354/ab00216