O-2 store management in diving emperor penguins

Ponganis, PJ, Stockard TK, Meir JU, Williams CL, Ponganis KV, Howard R.  2009.  O-2 store management in diving emperor penguins. Journal of Experimental Biology. 212:217-224.

Date Published:



aerobic dive limit, aptenodytes-forsteri, behavior, blood sampler, blood-flow, depletion, dives, emperor penguin, heart-rate, hemoglobin, ice, king penguins, lactate, nitrogen, oxygen electrode, oxygen store, oxygen-consumption, shunt, weddell seals


In order to further define O-2 store utilization during dives and understand the physiological basis of the aerobic dive limit (ADL, dive duration associated with the onset of post-dive blood lactate accumulation), emperor penguins (Aptenodytes forsteri) were equipped with either a blood partial pressure of oxygen (P-O2) recorder or a blood sampler while they were diving at an isolated dive hole in the sea ice of McMurdo Sound, Antarctica. Arterial P-O2 profiles (57 dives) revealed that (a) pre-dive P-O2 was greater than that at rest, (b) P-O2 transiently increased during descent and (c) post-dive P-O2 reached that at rest in 1.92 +/- 1.89 min (N=53). Venous P-O2 profiles (130 dives) revealed that (a) pre-dive venous P-O2 was greater than that at rest prior to 61% of dives, (b) in 90% of dives venous P-O2 transiently increased with a mean maximum P-O2 of 53 +/- 18 mmHg and a mean increase in P-O2 of 11 +/- 12 mmHg, (c) in 78% of dives, this peak venous P-O2 occurred within the first 3 min, and (d) post-dive venous P-O2 reached that at rest within 2.23 +/- 2.64 min (N=84). Arterial and venous P-O2 values in blood samples collected 1-3 min into dives were greater than or near to the respective values at rest. Blood lactate concentration was less than 2 mmol l(-1) as far as 10.5 min into dives, well beyond the known ADL of 5.6 min. Mean arterial and venous P-N2 of samples collected at 20-37 m depth were 2.5 times those at the surface, both being 2.1 +/- 0.7 atmospheres absolute (ATA; N=3 each), and were not significantly different. These findings are consistent with the maintenance of gas exchange during dives (elevated arterial and venous P-O2 and P-N2 during dives), muscle ischemia during dives (elevated venous P-O2, lack of lactate washout into blood during dives), and arterio-venous shunting of blood both during the surface period (venous P-O2 greater than that at rest) and during dives (arterialized venous P-O2 values during descent, equivalent arterial and venous P-N2 values during dives). These three physiological processes contribute to the transfer of the large respiratory O-2 store to the blood during the dive, isolation of muscle metabolism from the circulation during the dive, a decreased rate of blood O-2 depletion during dives, and optimized loading of O-2 stores both before and after dives. The lack of blood O-2 depletion and blood lactate elevation during dives beyond the ADL suggests that active locomotory muscle is the site of tissue lactate accumulation that results in post-dive blood lactate elevation in dives beyond the ADL.