High-affinity hemoglobin and blood oxygen saturation in diving emperor penguins

Meir, JU, Ponganis PJ.  2009.  High-affinity hemoglobin and blood oxygen saturation in diving emperor penguins. Journal of Experimental Biology. 212:3330-3338.

Date Published:



adaptation, aerobic dive limit, aptenodytes-forsteri, bird, blood, dissociation curves, elephant seals, gas transport, heart-rate, high-altitude, hypoxia, oxygen depletion, oxygen-hemoglobin dissociation curve, P(O2), respiratory properties, weddell seals


The emperor penguin (Aptenodytes forsteri) thrives in the Antarctic underwater environment, diving to depths greater than 500m and for durations longer than 23 min. To examine mechanisms underlying the exceptional diving ability of this species and further describe blood oxygen (O(2)) transport and depletion while diving, we characterized the O(2)-hemoglobin (Hb) dissociation curve of the emperor penguin in whole blood. This allowed us to (1) investigate the biochemical adaptation of Hb in this species, and (2) address blood O(2) depletion during diving, by applying the dissociation curve to previously collected partial pressure of O(2) (P(O2)) profiles to estimate in vivo Hb saturation (S(O2)) changes during dives. This investigation revealed enhanced Hb-O(2) affinity (P(50)=28mmHg, pH7.5) in the emperor penguin, similar to high-altitude birds and other penguin species. This allows for increased O(2) at low blood P(O2) levels during diving and more complete depletion of the respiratory O(2) store. S(O2) profiles during diving demonstrated that arterial S(O2) levels are maintained near 100% throughout much of the dive, not decreasing significantly until the final ascent phase. End-of-dive venous S(O2) values were widely distributed and optimization of the venous blood O(2) store resulted from arterialization and near complete depletion of venous blood O(2) during longer dives. The estimated contribution of the blood O(2) store to diving metabolic rate was low and highly variable. This pattern is due, in part, to the influx of O(2) from the lungs into the blood during diving, and variable rates of tissue O(2) uptake.