Blood flow and metabolic regulation in seal muscle during apnea

Ponganis, PJ, Kreutzer U, Stockard TK, Lin PC, Sailasuta N, Tran TK, Hurd R, Jue T.  2008.  Blood flow and metabolic regulation in seal muscle during apnea. Journal of Experimental Biology. 211:3323-3332.

Date Published:



cardiac-output, diving weddell seals, doppler, heart-rate, hemodynamics, human, mirounga-angustirostris, muscle, myoglobin, myoglobin translational diffusion, nmr, northern elephant seals, nuclear-magnetic-resonance, oxygen, oxygen-consumption, rest-associated apneas, skeletal-muscle


In order to examine myoglobin (Mb) function and metabolic responses of seal muscle during progressive ischemia and hypoxemia, Mb saturation and high-energy phosphate levels were monitored with NMR spectroscopy during sleep apnea in elephant seals (Mirounga angustirostris). Muscle blood flow (MBF) was measured with laser-Doppler flowmetry (LDF). During six, spontaneous, 8-12 min apneas of an unrestrained juvenile seal, apneic MBF decreased to 46 +/- 10% of the mean eupneic MBF. By the end of apnea, MBF reached 31 +/- 8% of the eupneic value. The t(1/2) for 90% decline in apneic MBF was 1.9 +/- 1.2 min. The initial post-apneic peak in MBF occurred within 0.20 +/- 0.04 min after the start of eupnea. NMR measurements revealed that Mb desaturated rapidly from its eupenic resting level to a lower steady state value within 4 min after the onset of apnea at rates between 1.7 +/- 1.0 and 3.8 +/- 1.5% min(-1), which corresponded to a muscle O(2) depletion rate of 1-2.3 ml O(2)kg(-1) min(-1). High-energy phosphate levels did not change with apnea. During the transition from apnea to eupnea, Mb resaturated to 95% of its resting level within the first minute. Despite the high Mb concentration in seal muscle, experiments detected Mb diffusing with a translational diffusion coefficient of 4.5 x 10(-7) cm(2) s(-1), consistent with the value observed in rat myocardium. Equipoise P(O2) analysis revealed that Mb is the predominant intracellular O(2) transporter in elephant seals during eupnea and apnea.