Air sac P-O2 and oxygen depletion during dives of emperor penguins

Citation:
Knower Stockard, T, Heil J, Meir JU, Sato K, Ponganis KV, Ponganis PJ.  2005.  Air sac P-O2 and oxygen depletion during dives of emperor penguins. Journal of Experimental Biology. 208:2973-2980.

Date Published:

Aug

Keywords:

air sac, Aptenodytes forsteri, behavior, birds, depth, dive, duck, electrode, emperor penguin, gas-exchange, hypoxia, locomotion, metabolic rate, oxygen, physiology, sea-ice, temperature

Abstract:

In order to determine the rate and magnitude of respiratory O-2 depletion during dives of emperor penguins (Aptenodytes forsteri), air sac O-2 partial pressure (PO2) was recorded in 73 dives of four birds at an isolated dive hole. These results were evaluated with respect to hypoxic tolerance, the aerobic dive limit (ADL; dive duration beyond which there is post-dive lactate accumulation) and previously measured field metabolic rates (FMRs). 55% of dives were greater in duration than the previously measured 5.6-min ADL. P-O2 and depth profiles revealed compression hyperoxia and gradual O-2 depletion during dives. 42% of final P(O2)s during the dives (recorded during the last 15 s of ascent) were < 20 mmHg (< 2.7 kPa). Assuming that the measured air sac P-O2 is representative of the entire respiratory system, this implies remarkable hypoxic tolerance in emperors. In dives of durations greater than the ADL, the calculated end-of-dive air sac O-2 fraction was < 4%. The respiratory O-2 store depletion rate of an entire dive, based on the change in O-2 fraction during a dive and previously measured diving respiratory volume, ranged from I to 5 ml O-2 kg(-1) min(-1) and decreased exponentially with diving duration. The mean value, 2.1 +/- 0.8 ml O-2 kg(-1) min(-1), was (1) 19-42% of previously measured respiratory O-2 depletion rates during forced submersions and simulated dives, (2) approximately one-third of the predicted total body resting metabolic rate and (3) approximately 10% of the measured FMR. These findings are consistent with a low total body metabolic rate during the dive.

Notes:

n/a

Website

DOI:

10.1242/jeb.01687