Export 3 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K [L] M N O P Q R S T U V W X Y Z   [Show ALL]
Pommier, A, Gaillard F, Pichavant M, Scaillet B.  2008.  Laboratory measurements of electrical conductivities of hydrous and dry Mount Vesuvius melts under pressure. Journal of Geophysical Research-Solid Earth. 113   10.1029/2007jb005269   AbstractWebsite

[1] Quantitative interpretation of MT anomalies in volcanic regions requires laboratory measurements of electrical conductivities of natural magma compositions. The electrical conductivities of three lava compositions from Mount Vesuvius (Italy) have been measured using an impedance spectrometer. Experiments were conducted on both glasses and melts between 400 and 1300 degrees C, at both ambient pressure in air and high pressures (up to 400 MPa). Both dry and hydrous (up to 5.6 wt % H2O) melt compositions were investigated. A change of the conduction mechanism corresponding to the glass transition was systematically observed. The conductivity data were fitted by sample-specific Arrhenius laws on either side of Tg. The electrical conductivity increases with temperature and is higher in the order tephrite, phonotephrite to phonolite. For the three investigated compositions, increasing pressure decreases the conductivity, although the effect of pressure is relatively small. The three investigated compositions have similar activation volumes (Delta V= 16-24 cm(3) mol(-1)). Increasing the water content of the melt increases the conductivity. Comparison of activation energies (Ea) from conductivity and sodium diffusion and use of the Nernst-Einstein relation allow sodium to be identified as the main charge carrier in our melts and presumably also in the corresponding glasses. Our data and those of previous studies highlight the correlation between the Arrhenius parameters Ea and sigma(0). A semiempirical method allowing the determination of the electrical conductivity of natural magmatic liquids is proposed, in which the activation energy is modeled on the basis of the Anderson-Stuart model, sigma(0) being obtained from the compensation law and Delta V being fitted from our experimental data. The model enables the electrical conductivity to be calculated for the entire range of melt compositions at Mount Vesuvius and also satisfactorily predicts the electrical response of other melt compositions. Electrical conductivity data for Mount Vesuvius melts and magmas are slightly lower than the electrical anomaly revealed by MT studies.

Carporzen, L, Weiss BP, Gilder SA, Pommier A, Hart RJ.  2012.  Lightning remagnetization of the Vredefort impact crater: No evidence for impact-generated magnetic fields. Journal of Geophysical Research-Planets. 117   10.1029/2011je003919   AbstractWebsite

The Vredefort impact crater in South Africa is one of the oldest and largest craters on Earth, making it a unique analog for planetary basins. Intense and randomly oriented remanent magnetization observed in surface samples at Vredefort has been attributed to impact-generated magnetic fields. This possibility has major implications for extraterrestrial paleomagnetism since impact-generated fields have been proposed as a key alternative to the dynamo hypothesis for magnetization on the Moon and asteroids. Furthermore, the presence of single-domain magnetite found along shock-generated planar deformation features in Vredefort granites has been widely attributed to the 2.02 Ga impact event. An alternative hypothesis is that the unusual magnetization and/or rock magnetic properties of Vredefort rocks are the products of recent lightning strikes. Lightning and impact-generated fields can be distinguished by measuring samples collected from below the present surface. Here we present a paleomagnetic and rock magnetic study of samples from two 10 m deep vertical boreholes. We show that the magnetization at depth is consistent with a thermoremanent magnetization acquired in the local geomagnetic field following the impact, while random, intense magnetization and some of the unusual rock magnetic properties observed in surface rocks are superficial phenomena produced by lightning. Because Vredefort is the only terrestrial crater that has been proposed to contain records of impact-generated fields, this removes a key piece of evidence in support of the hypothesis that paleomagnetism of the Moon and other extraterrestrial bodies is the product of impacts rather than past core dynamos.

Khan, A, Pommier A, Neumann GA, Mosegaard K.  2013.  The lunar moho and the internal structure of the Moon: A geophysical perspective. Tectonophysics. 609:331-352.   10.1016/J.Tecto.2013.02.024   AbstractWebsite

Extraterrestrial seismology saw its advent with the deployment of seismometers during the Apollo missions that were undertaken from July 1969 to December 1972. The Apollo lunar seismic data constitute a unique resource being the only seismic data set which can be used to infer the interior structure of a planetary body besides the Earth. On-going analysis and interpretation of the seismic data continues to provide constraints that help refine lunar origin and evolution. In addition to this, lateral variations in crustal thickness (similar to 0-80 km) are being mapped out at increasing resolution from gravity and topography data that have and continue to be collected with a series of recent lunar orbiter missions. Many of these also carry onboard multi-spectral imaging equipment that is able to map out major-element concentration and surface mineralogy to high precision. These results coupled with improved laboratory-based petrological studies of lunar samples provide important constraints on models for lunar magma ocean evolution, which ultimately determines internal structure. Whereas existing constraints on initial depth of melting and differentiation from quantitative modeling suggested only partial Moon involvement (<500 km depth), more recent models tend to favor a completely molten Moon, although the former cannot be ruled out sensu stricto. Recent geophysical analysis coupled with thermodynamical computations of phase equilibria and physical properties of mantle minerals suggest that the Earth and Moon are compositionally distinct. Continued analysis of ground-based laser ranging data and recent discovery of possible core reflected phases in the Apollo lunar seismic data strengthens the case for a small dense lunar core with a radius of <400 km corresponding to 1-3% of lunar mass. (C) 2013 Elsevier B.V. All rights reserved.