Publications

Export 6 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D [E] F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
E
Pommier, A, Leinenweber KD.  2018.  Electrical cell assembly for reproducible conductivity experiments in the multi-anvil. American Mineralogist. 103:1298-1305.   10.2138/am-2018-6448   AbstractWebsite

Electrical conductivity experiments under pressure and temperature conditions relevant to planetary interiors are a powerful tool to probe the transport properties of Earth and planetary materials as well as to interpret field-based electrical data. To promote repeatability and reproducibility of electrical experiments among multi-anvil facilities that use this technique, we designed and developed an electrical conductivity cell for multi-anvil experiments based on the 14/8 assembly that was developed to allow access to high temperatures. Here we present the details of design and parts developed for this cell that is available via the Consortium for Material Properties Research in Earth Sciences (COMPRES). The electrical cell has been tested up to 10 GPa and about 2000 degrees C on different materials (silicates and metals, both in the solid and liquid state).

Key, K, Constable S, Liu L, Pommier A.  2013.  Electrical image of passive mantle upwelling beneath the northern East Pacific Rise. Nature. 495:499-502.: Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.   10.1038/nature11932   AbstractWebsite

Melt generated by mantle upwelling is fundamental to the production of new oceanic crust at mid-ocean ridges, yet the forces controlling this process are debated1, 2. Passive-flow models predict symmetric upwelling due to viscous drag from the diverging tectonic plates, but have been challenged by geophysical observations of asymmetric upwelling3, 4, 5 that suggest anomalous mantle pressure and temperature gradients2, 6, 7, and by observations of concentrated upwelling centres8 consistent with active models where buoyancy forces give rise to focused convective flow2. Here we use sea-floor magnetotelluric soundings at the fast-spreading northern East Pacific Rise to image mantle electrical structure to a depth of about 160 kilometres. Our data reveal a symmetric, high-conductivity region at depths of 20–90 kilometres that is consistent with partial melting of passively upwelling mantle9, 10, 11. The triangular region of conductive partial melt matches passive-flow predictions, suggesting that melt focusing to the ridge occurs in the porous melting region rather than along the shallower base of the thermal lithosphere. A deeper conductor observed east of the ridge at a depth of more than 100 kilometres is explained by asymmetric upwelling due to viscous coupling across two nearby transform faults. Significant electrical anisotropy occurs only in the shallowest mantle east of the ridge axis, where high vertical conductivity at depths of 10–20 kilometres indicates localized porous conduits. This suggests that a coincident seismic-velocity anomaly12 is evidence of shallow magma transport channels13, 14 rather than deeper off-axis upwelling. We interpret the mantle electrical structure as evidence that plate-driven passive upwelling dominates this ridge segment, with dynamic forces being negligible.

Zhang, Z, Pommier A.  2017.  Electrical Investigation of Metal-Olivine Systems and Application to the Deep Interior of Mercury. Journal of Geophysical Research: Planets.   10.1002/2017JE005390   Abstract

We report electrical conductivity measurements on metal-olivine systems at about 5 and 6 GPa and up to 1,675°C in order to investigate the electrical properties of core-mantle boundary (CMB) systems. Electrical experiments were conducted in the multianvil apparatus using the impedance spectroscopy technique. The samples are composed of one metal layer (Fe, FeS, FeSi2, or Fe-Ni-S-Si) and one polycrystalline olivine layer, with the metal:olivine ratio ranging from 1:0.7 to 1:9.2. For all samples, we observe that the bulk electrical conductivity increases with temperature from 10−2.5 to 101.8 S/m, which is higher than the conductivity of polycrystalline olivine but lower than the conductivity of the pure metal phase at similar conditions. In some experiments, a conductivity jump is observed at the temperature corresponding to the melting temperature of the metallic phase. Both the metal:olivine ratio and the metal phase geometry control the electrical conductivity of the two-layer samples. By combining electrical results, textural analyses of the samples, and previous studies of the structure and composition of Mercury's interior, we propose an electrical profile of the deep interior of the planet that accounts for a layered CMB-outer core structure. The electrical model agrees with existing conductivity estimates of Mercury's lower mantle and CMB using magnetic observations and thermodynamic calculations, and thus, supports the hypothesis of a layered CMB-outermost core structure in the present-day interior of Mercury. We propose that the layered CMB-outer core structure is possibly electrically insulating, which may influence the planet's structure and cooling history.

Pommier, A, Williams Q, Evans RL, Pal I, Zhang Z.  2019.  Electrical investigation of natural lawsonite and application to subduction contexts. Journal of Geophysical Research-Solid Earth. 124:1430-1442.   10.1029/2018jb016899   AbstractWebsite

We report an experimental investigation of the electrical properties of natural polycrystalline lawsonite from Reed Station, CA. Lawsonite represents a particularly efficient water reservoir in subduction contexts, as it can carry about 12wt% water and is stable over a wide pressure range. Experiments were performed from 300 to about 1325 degrees C and under pressure from 1 to 10GPa using a multi-anvil apparatus. We observe that temperature increases lawsonite conductivity until fluids escape the cell after dehydration occurs. At a fixed temperature of 500 degrees C, conductivity measurements during compression indicate electrical transitions at about 4.0 and 9.7GPa that are consistent with crystallographic transitions from orthorhombic C to P and from orthorhombic to monoclinic systems, respectively. Comparison with lawsonite structure studies indicates an insignificant temperature dependence of these crystallographic transitions. We suggest that lawsonite dehydration could contribute to (but not solely explain) high conductivity anomalies observed in the Cascades by releasing aqueous fluid at a depth (similar to 50km) consistent with the basalt-eclogite transition. In subduction settings where the incoming plate is older and cooler (e.g., Japan), lawsonite remains stable to great depth. In these cooler settings, lawsonite could represent a vehicle for deep water transport and the subsequent triggering of melt that would appear electrically conductive, though it is difficult to uniquely identify the contributions from lawsonite on field electrical profiles in these more deep-seated domains.

Pommier, A, Leinenweber K, Kohlstedt DL, Qi C, Garnero EJ, Mackwell SJ, Tyburczy JA.  2015.  Experimental constraints on the electrical anisotropy of the lithosphere-asthenosphere system. Nature. 522:202-+.   10.1038/nature14502   AbstractWebsite

The relative motion of lithospheric plates and underlying mantle produces localized deformation near the lithosphere-asthenosphere boundary(1). The transition from rheologically stronger lithosphere to weaker asthenosphere may result from a small amount of melt or water in the asthenosphere, reducing viscosity(1-3). Either possibility may explain the seismic and electrical anomalies that extend to a depth of about 200 kilometres(4,5). However, the effect of melt on the physical properties of deformed materials at upper-mantle conditions remains poorly constrained(6). Here we present electrical anisotropy measurements at high temperatures and quasi-hydrostatic pressures of about three gigapascals on previously deformed olivine aggregates and sheared partially molten rocks. For all samples, electrical conductivity is highest when parallel to the direction of prior deformation. The conductivity of highly sheared olivine samples is ten times greater in the shear direction than for undeformed samples. At temperatures above 900 degrees Celsius, a deformed solid matrix with nearly isotropic melt distribution has an electrical anisotropy factor less than five. To obtain higher electrical anisotropy (up to a factor of 100), we propose an experimentally based model in which layers of sheared olivine are alternated with layers of sheared olivine plus MORB or of pure melt. Conductivities are up to 100 times greater in the shear direction than when perpendicular to the shear direction and reproduce stress-driven alignment of the melt. Our experimental results and the model reproduce mantle conductivity-depth profiles for melt-bearing geological contexts. The field data are best fitted by an electrically anisotropic asthenosphere overlain by an isotropic, high-conductivity lower most lithosphere. The high conductivity could arise from partial melting associated with localized deformation resulting from differential plate velocities relative to the mantle, with subsequent upward melt percolation from the asthenosphere.

Pommier, A, Leinenweber K, Tasaka M.  2015.  Experimental investigation of the electrical behavior of olivine during partial melting under pressure and application to the lunar mantle. Earth and Planetary Science Letters. 425:242-255.   10.1016/j.epsl.2015.05.052   AbstractWebsite

Electrical conductivity measurements were performed during melting experiments of olivine compacts (dry and hydrous Fo(77) and Fo(90)) at 4 and 6 GPa in order to investigate melt transport properties and quantify the effect of partial melting on electrical properties. Experiments were performed in the multi-anvil apparatus and electrical measurements were conducted using the impedance spectroscopy technique with the two-electrode method. Changes in impedance spectra were used to identify the transition from an electrical response controlled by the solid matrix to an electrical response controlled by the melt phase. This transition occurs slightly above the solidus temperature and lasts until T-solidus + 75 degrees C (+/- 25). At higher temperature, a significant increase in conductivity (corresponding to an increase in conductivity values by a factor ranging from similar to 30 to 100) is observed, consistent with the transition from a tube-dominated network to a structure in which melt films and pools become prominent features. This increase in conductivity corresponds to an abrupt jump for all dry samples and to a smoother increase for the hydrous sample. It is followed by a plateau at higher temperature, suggesting that the electrical response of the investigated samples lacks sensitivity to temperature at an advanced stage of partial melting. Electron microprobe analyses on quenched products indicated an increase in Mg# (molar Mg/(Mg + Fe)) of olivine during experiments (similar to 77-93 in the quenched samples with an initial Fo(77) composition and similar to 92-97 in the quenched samples with an initial Fo(90) composition) due to the partitioning of iron to the melt phase. Assuming a respective melt fraction of 0.10 and 0.20 before and after the phase of significant increase in conductivity, in agreement with previous electrical and permeability studies, our results can be reproduced satisfactorily by two-phase electrical models (the Hashin and Shtrikman bounds and the modified brick layer model), and provide a melt conductivity value of 78 (+/- 8) S/m for all Fo(77) samples and 45 (+/- 5) S/m for the Fo(90) sample. Comparison of our results with electromagnetic sounding data of the deep interior of the Moon supports the hypothesis of the presence of interconnected melt at the base of the lunar mantle. Our results underline that electrical conductivity can be used to investigate in situ melt nucleation and migration in the interior of terrestrial planets. (C) 2015 Elsevier B.V. All rights reserved.