Export 9 results:
Sort by: Author Title Type [ Year  (Desc)]
Pommier, A, Leinenweber KD.  2018.  Electrical cell assembly for reproducible conductivity experiments in the multi-anvil. American Mineralogist. 103:1298-1305.   10.2138/am-2018-6448   AbstractWebsite

Electrical conductivity experiments under pressure and temperature conditions relevant to planetary interiors are a powerful tool to probe the transport properties of Earth and planetary materials as well as to interpret field-based electrical data. To promote repeatability and reproducibility of electrical experiments among multi-anvil facilities that use this technique, we designed and developed an electrical conductivity cell for multi-anvil experiments based on the 14/8 assembly that was developed to allow access to high temperatures. Here we present the details of design and parts developed for this cell that is available via the Consortium for Material Properties Research in Earth Sciences (COMPRES). The electrical cell has been tested up to 10 GPa and about 2000 degrees C on different materials (silicates and metals, both in the solid and liquid state).

Pommier, A, Kohlstedt DL, Hansen LN, Mackwell S, Tasaka M, Heidelbach F, Leinenweber K.  2018.  Transport properties of olivine grain boundaries from electrical conductivity experiments. Contributions to Mineralogy and Petrology. 173   10.1007/s00410-018-1468-z   AbstractWebsite

Grain boundary processes contribute significantly to electronic and ionic transports in materials within Earth's interior. We report a novel experimental study of grain boundary conductivity in highly strained olivine aggregates that demonstrates the importance of misorientation angle between adjacent grains on aggregate transport properties. We performed electrical conductivity measurements of melt-free polycrystalline olivine (Fo(90)) samples that had been previously deformed at 1200 degrees C and 0.3 GPa to shear strains up to gamma = 7.3. The electrical conductivity and anisotropy were measured at 2.8 GPa over the temperature range 700-1400 degrees C. We observed that (1) the electrical conductivity of samples with a small grain size (3-6 mu m) and strong crystallographic preferred orientation produced by dynamic recrystallization during large-strain shear deformation is a factor of 10 or more larger than that measured on coarse-grained samples, (2) the sample deformed to the highest strain is the most conductive even though it does not have the smallest grain size, and (3) conductivity is up to a factor of similar to 4 larger in the direction of shear than normal to the shear plane. Based on these results combined with electrical conductivity data for coarse-grained, polycrystalline olivine and for single crystals, we propose that the electrical conductivity of our fine-grained samples is dominated by grain boundary paths. In addition, the electrical anisotropy results from preferential alignment of higher-conductivity grain boundaries associated with the development of a strong crystallographic preferred orientation of the grains.

Zhang, Z, Pommier A.  2017.  Electrical Investigation of Metal-Olivine Systems and Application to the Deep Interior of Mercury. Journal of Geophysical Research: Planets.   10.1002/2017JE005390   Abstract

We report electrical conductivity measurements on metal-olivine systems at about 5 and 6 GPa and up to 1,675°C in order to investigate the electrical properties of core-mantle boundary (CMB) systems. Electrical experiments were conducted in the multianvil apparatus using the impedance spectroscopy technique. The samples are composed of one metal layer (Fe, FeS, FeSi2, or Fe-Ni-S-Si) and one polycrystalline olivine layer, with the metal:olivine ratio ranging from 1:0.7 to 1:9.2. For all samples, we observe that the bulk electrical conductivity increases with temperature from 10−2.5 to 101.8 S/m, which is higher than the conductivity of polycrystalline olivine but lower than the conductivity of the pure metal phase at similar conditions. In some experiments, a conductivity jump is observed at the temperature corresponding to the melting temperature of the metallic phase. Both the metal:olivine ratio and the metal phase geometry control the electrical conductivity of the two-layer samples. By combining electrical results, textural analyses of the samples, and previous studies of the structure and composition of Mercury's interior, we propose an electrical profile of the deep interior of the planet that accounts for a layered CMB-outer core structure. The electrical model agrees with existing conductivity estimates of Mercury's lower mantle and CMB using magnetic observations and thermodynamic calculations, and thus, supports the hypothesis of a layered CMB-outermost core structure in the present-day interior of Mercury. We propose that the layered CMB-outer core structure is possibly electrically insulating, which may influence the planet's structure and cooling history.

Pommier, A, Leinenweber K, Tasaka M.  2015.  Experimental investigation of the electrical behavior of olivine during partial melting under pressure and application to the lunar mantle. Earth and Planetary Science Letters. 425:242-255.   10.1016/j.epsl.2015.05.052   AbstractWebsite

Electrical conductivity measurements were performed during melting experiments of olivine compacts (dry and hydrous Fo(77) and Fo(90)) at 4 and 6 GPa in order to investigate melt transport properties and quantify the effect of partial melting on electrical properties. Experiments were performed in the multi-anvil apparatus and electrical measurements were conducted using the impedance spectroscopy technique with the two-electrode method. Changes in impedance spectra were used to identify the transition from an electrical response controlled by the solid matrix to an electrical response controlled by the melt phase. This transition occurs slightly above the solidus temperature and lasts until T-solidus + 75 degrees C (+/- 25). At higher temperature, a significant increase in conductivity (corresponding to an increase in conductivity values by a factor ranging from similar to 30 to 100) is observed, consistent with the transition from a tube-dominated network to a structure in which melt films and pools become prominent features. This increase in conductivity corresponds to an abrupt jump for all dry samples and to a smoother increase for the hydrous sample. It is followed by a plateau at higher temperature, suggesting that the electrical response of the investigated samples lacks sensitivity to temperature at an advanced stage of partial melting. Electron microprobe analyses on quenched products indicated an increase in Mg# (molar Mg/(Mg + Fe)) of olivine during experiments (similar to 77-93 in the quenched samples with an initial Fo(77) composition and similar to 92-97 in the quenched samples with an initial Fo(90) composition) due to the partitioning of iron to the melt phase. Assuming a respective melt fraction of 0.10 and 0.20 before and after the phase of significant increase in conductivity, in agreement with previous electrical and permeability studies, our results can be reproduced satisfactorily by two-phase electrical models (the Hashin and Shtrikman bounds and the modified brick layer model), and provide a melt conductivity value of 78 (+/- 8) S/m for all Fo(77) samples and 45 (+/- 5) S/m for the Fo(90) sample. Comparison of our results with electromagnetic sounding data of the deep interior of the Moon supports the hypothesis of the presence of interconnected melt at the base of the lunar mantle. Our results underline that electrical conductivity can be used to investigate in situ melt nucleation and migration in the interior of terrestrial planets. (C) 2015 Elsevier B.V. All rights reserved.

Khan, A, Connolly JAD, Pommier A, Noir J.  2014.  Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution. Journal of Geophysical Research-Planets. 119:2197-2221.   10.1002/2014je004661   AbstractWebsite

Analysis of lunar laser ranging and seismic data has yielded evidence that has been interpreted to indicate a molten zone in the lowermost mantle overlying a fluid core. Such a zone provides strong constraints on models of lunar thermal evolution. Here we determine thermochemical and physical structure of the deep Moon by inverting lunar geophysical data (mean mass and moment of inertia, tidal Love number, and electromagnetic sounding data) in combination with phase-equilibrium computations. Specifically, we assess whether a molten layer is required by the geophysical data. The main conclusion drawn from this study is that a region with high dissipation located deep within the Moon is required to explain the geophysical data. This region is located within the mantle where the solidus is crossed at a depth of approximate to 1200 km (1600 degrees C). Inverted compositions for the partially molten layer (150-200 km thick) are enriched in FeO and TiO2 relative to the surrounding mantle. The melt phase is neutrally buoyant at pressures of similar to 4.5-4.6 GPa but contains less TiO2 (<15 wt %) than the Ti-rich (similar to 16 wt %) melts that produced a set of high-density primitive lunar magmas (density of 3.4 g/cm(3)). Melt densities computed here range from 3.25 to 3.45 g/cm(3) bracketing the density of lunar magmas with moderate-to-high TiO2 contents. Our results are consistent with a model of lunar evolution in which the cumulate pile formed from crystallization of the magma ocean as it overturned, trapping heat-producing elements in the lower mantle.

Pommier, A.  2014.  Interpretation of magnetotelluric results using laboratory measurements. Surveys in Geophysics. 35:41-84.   10.1007/S10712-013-9226-2   AbstractWebsite

Magnetotelluric (MT) surveying is a remote sensing technique of the crust and mantle based on electrical conductivity that provides constraints to our knowledge of the structure and composition of the Earth's interior. This paper presents a review of electrical measurements in the laboratory applied to the understanding of MT profiles. In particular, the purpose of such a review is to make the laboratory technique accessible to geophysicists by pointing out the main caveats regarding a careful use of laboratory data to interpret electromagnetic profiles. First, this paper addresses the main issues of cross-spatial-scale comparisons. For brevity, these issues are restricted to reproducing in the laboratory the texture, structure of the sample as well as conditions prevailing in the Earth's interior (pressure, temperature, redox conditions, time). Second, some critical scientific questions that have motivated laboratory-based interpretation of electromagnetic profiles are presented. This section will focus on the characterization of the presence and distribution of hydrogen in the Earth's crust and mantle, the investigation of electrical anisotropy in the asthenosphere and the interpretation of highly conductive field anomalies. In a last section, the current and future challenges to improve quantitative interpretation of MT profiles are discussed. These challenges correspond to technical improvements in the laboratory and the field as well as the integration of other disciplines, such as petrology, rheology and seismology.

Pommier, A, Evans RL, Key K, Tyburczy JA, Mackwell S, Elsenbeck J.  2013.  Prediction of silicate melt viscosity from electrical conductivity: A model and its geophysical implications. Geochemistry Geophysics Geosystems. 14:1685-1692.   10.1002/ggge.20103   AbstractWebsite

Our knowledge of magma dynamics would be improved if geophysical data could be used to infer rheological constraints in melt-bearing zones. Geophysical images of the Earth's interior provide frozen snapshots of a dynamical system. However, knowledge of a rheological parameter such as viscosity would constrain the time-dependent dynamics of melt bearing zones. We propose a model that relates melt viscosity to electrical conductivity for naturally occurring melt compositions (including H2O) and temperature. Based on laboratory measurements of melt conductivity and viscosity, our model provides a rheological dimension to the interpretation of electromagnetic anomalies caused by melt and partially molten rocks (melt fraction similar to >0.7).

Pommier, A, Le-Trong E.  2011.  "SIGMELTS": A web portal for electrical conductivity calculations in geosciences. Computers & Geosciences. 37:1450-1459.   10.1016/J.Cageo.2011.01.002   AbstractWebsite

Electrical conductivity measurements in the laboratory are critical for interpreting geoelectric and magnetotelluric profiles of the Earth's crust and mantle. In order to facilitate access to the current database on electrical conductivity of geomaterials, we have developed a freely available web application (SIGMELTS) dedicated to the calculation of electrical properties. Based on a compilation of previous studies, SIGMELTS computes the electrical conductivity of silicate melts, carbonatites, minerals, fluids, and mantle materials as a function of different parameters, such as composition, temperature, pressure, water content, and oxygen fugacity. Calculations on two-phase mixtures are also implemented using existing mixing models for different geometries. An illustration of the use of SIGMELTS is provided, in which calculations are applied to the subduction zone-related volcanic zone in the Central Andes. Along with petrological considerations, field and laboratory electrical data allow discrimination between the different hypotheses regarding the formation and rise from depth of melts and fluids and quantification of their storage conditions. (C) 2011 Elsevier Ltd. All rights reserved.

Pommier, A, Tarits P, Hautot S, Pichavant M, Scaillet B, Gaillard F.  2010.  A new petrological and geophysical investigation of the present-day plumbing system of Mount Vesuvius. Geochemistry Geophysics Geosystems. 11   10.1029/2010gc003059   AbstractWebsite

A model of the electrical resistivity of Mt. Vesuvius has been elaborated to investigate the present structure of the volcanic edifice. The model is based on electrical conductivity measurements in the laboratory, on geophysical information, in particular, magnetotelluric (MT) data, and on petrological and geochemical constraints. Both 1-D and 3-D simulations explored the effect of depth, volume and resistivity of either one or two reservoirs in the structure. For each configuration tested, modeled MT transfer functions were compared to field transfer functions from field magnetotelluric studies. The field electrical data are reproduced with a shallow and very conductive layer (similar to 0.5 km depth, 1.2 km thick, 5 ohm. m resistive) that most likely corresponds to a saline brine present beneath the volcano. Our results are also compatible with the presence of cooling magma batches at shallow depths (<3-4 km depth). The presence of a deeper body at similar to 8 km depth, as suggested by seismic studies, is consistent with the observed field transfer functions if such a body has an electrical resistivity > similar to 100 ohm. m. According to a petro-physical conductivity model, such a resistivity value is in agreement either with a low-temperature, crystal-rich magma chamber or with a small quantity of hotter magma interconnected in the resistive surrounding carbonates. However, the low quality of MT field data at long periods prevent from placing strong constraints on a potential deep magma reservoir. A comparison with seismic velocity values tends to support the second hypothesis. Our findings would be consistent with a deep structure (8-10 km depth) made of a tephriphonolitic magma at 1000 degrees C, containing 3.5 wt%H2O, 30 vol.% crystals, and interconnected in carbonates in proportions similar to 45% melt -55% carbonates.