Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
Pichavant, M, Scaillet B, Pommier A, Iacono-Marziano G, Cioni R.  2014.  Nature and evolution of primitive Vesuvius magmas: An experimental study. Journal of Petrology. 55:2281-2309.   10.1093/petrology/egu057   AbstractWebsite

Two mafic eruptive products from Vesuvius, a tephrite and a trachybasalt, have been crystallized in the laboratory to constrain the nature of primitive Vesuvius magmas and their crustal evolution. Experiments were performed at high temperatures (from 1000 to a parts per thousand yen1200A degrees C) and both at 0 center dot 1 MPa and at high pressures (from 50 to 200 MPa) under H2O-bearing fluid-absent and H2O- and CO2-bearing fluid-present conditions. Experiments started from glass except for a few that started from glass plus San Carlos olivine crystals to force olivine saturation. Melt H2O concentrations reached a maximum of 6 center dot 0 wt % and experimental fO(2) ranged from NNO - 0 center dot 1 to NNO + 3 center dot 4 (where NNO is nickel-nickel oxide buffer). Clinopyroxene (Mg# up to 93) is the liquidus phase for the two investigated samples; it is followed by leucite for H2O in melt < 3 wt %, and by phlogopite (Mg# up to 81) for H2O in melt > 3 wt %. Olivine (Fo(85)) crystallized spontaneously in only one experimental charge. Plagioclase was not found. Upon progressive crystallization of clinopyroxene, glass K2O and Al2O3 contents strongly increase whereas MgO, CaO and CaO/Al2O3 decrease; the residual melts follow the evolution of Vesuvius whole-rocks from trachybasalt to tephrite, phonotephrite and to tephriphonolite. Concentrations of H2O and CO2 in near-liquidus 200 MPa glasses and primitive melt inclusions from the literature overlap. The earliest evolutionary stage, corresponding to the crystallization of Fo-rich olivine, was reconstructed by the olivine-added experiments. They show that the primitive Vesuvius melts are trachybasalts (K2O similar to 4 center dot 5-5 center dot 5 wt %, MgO = 8-9 wt %, Mg# = 75-80, CaO/Al2O3 = 0 center dot 9-0 center dot 95) that crystallize Fo-rich olivine (90-91) as the liquidus phase between 1150 and 1200A degrees C and from 300 to < 200 MPa. Primitive Vesuvius melts are volatile-rich (1 center dot 5-4 center dot 5 wt % H2O and 600-4500 ppm CO2 in primitive melt inclusions) and oxidized (from NNO + 0 center dot 4 to NNO + 1 center dot 2). Assimilation of carbonate wall-rocks by ascending primitive magmas can account for the disappearance of olivine from crystallization sequences and explains the lack of rocks representative of olivine-crystallizing magmas. A correlation between carbonate assimilation and the type of feeding system is proposed: carbonate assimilation is promoted for primitive magma batches of small volumes. In contrast, for longer-lived, large-volume, less frequently recharged, hence more evolved, cooler reservoirs, magma-carbonate interaction is limited. Primitive magmas from Vesuvius and other Campanian volcanoes have similar redox states. However, the Cr# of Vesuvius spinels is distinctive and therefore the peridotitic component in the mantle source of Vesuvius differs from that of the other Campanian magmas.

Khan, A, Connolly JAD, Pommier A, Noir J.  2014.  Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution. Journal of Geophysical Research-Planets. 119:2197-2221.   10.1002/2014je004661   AbstractWebsite

Analysis of lunar laser ranging and seismic data has yielded evidence that has been interpreted to indicate a molten zone in the lowermost mantle overlying a fluid core. Such a zone provides strong constraints on models of lunar thermal evolution. Here we determine thermochemical and physical structure of the deep Moon by inverting lunar geophysical data (mean mass and moment of inertia, tidal Love number, and electromagnetic sounding data) in combination with phase-equilibrium computations. Specifically, we assess whether a molten layer is required by the geophysical data. The main conclusion drawn from this study is that a region with high dissipation located deep within the Moon is required to explain the geophysical data. This region is located within the mantle where the solidus is crossed at a depth of approximate to 1200 km (1600 degrees C). Inverted compositions for the partially molten layer (150-200 km thick) are enriched in FeO and TiO2 relative to the surrounding mantle. The melt phase is neutrally buoyant at pressures of similar to 4.5-4.6 GPa but contains less TiO2 (<15 wt %) than the Ti-rich (similar to 16 wt %) melts that produced a set of high-density primitive lunar magmas (density of 3.4 g/cm(3)). Melt densities computed here range from 3.25 to 3.45 g/cm(3) bracketing the density of lunar magmas with moderate-to-high TiO2 contents. Our results are consistent with a model of lunar evolution in which the cumulate pile formed from crystallization of the magma ocean as it overturned, trapping heat-producing elements in the lower mantle.