Publications

Export 55 results:
Sort by: Author Title [ Type  (Asc)] Year
Journal Article
Flatau, M, Schubert WH, Stevens DE.  1994.  The Role of Baroclinic Processes in Tropical Cyclone Motion - the Influence of Vertical Tilt. Journal of the Atmospheric Sciences. 51:2589-2601.   10.1175/1520-0469(1994)051<2589:trobpi>2.0.co;2   AbstractWebsite

The numerical study presented here focuses on baroclinic processes that contribute to tropical cyclone (TC) propagation. A three-dimensional, semispectral, primitive equation model of baroclinic vortex was developed to study TC motion. In a tiled vortex, interaction between upper- and lower-level vorticity anomalies leads to vortex propagation relative to the steering flow. On a beta plane, with no environmental flow, the vortex is tilted toward the south and the interaction between the layers reduces the westward movement of the vortex. The vortex tilting can also occur due to the vertical shear in the environmental wind. On an f plane, the interaction between the layers causes the northward movement of the vortex in westerly linear shear, and southward movement in easterly linear shear, with a meridional velocity of about 1 ms-1. This velocity increases with increasing vortex intensity and vertical motion.

Flatau, M, Stevens DE.  1993.  The Role of Outflow-Layer Instabilities in Tropical Cyclone Motion. Journal of the Atmospheric Sciences. 50:1721-1733.   10.1175/1520-0469(1993)050<1721:trooli>2.0.co;2   AbstractWebsite

The paper examines the role of the development of outflow-layer instabilities on the motion of tropical cyclones. The influence of barotropic instability is examined by comparing the time changes in the storm tracks with the frequencies of free, unstable barotropic modes. For intense vortices barotropic instability is shown to contribute to the slow (periods of a few days) trochoidal motion of a cyclone. The development of instability depends on the horizontal distribution and frequency of environmental forcing. The strongest response occurs when the frequency of the forcing matches the frequency of an unstable mode.

Flatau, PJ, Fuller KA, Mackowski DW.  1993.  Scattering by 2 Spheres in Contact - Comparisons between Discrete-Dipole Approximation and Modal-Analysis. Applied Optics. 32:3302-3305.   10.1364/AO.32.003302   AbstractWebsite

This paper applies two different techniques to the problem of scattering by two spheres in contact: modal analysis, which is an exact method, and the discrete-dipole approximation (DDA). Good agreement is obtained, which further demonstrates the utility of the DDA to scattering problems for irregular particles. The choice of the DDA polarizability scheme is discussed in detail. We show that the lattice dispersion relation provides excellent improvement over the Clausius-Mossoti polarizability parameterization.

Matthews, AJ, Baranowski DB, Heywood KJ, Flatau PJ, Schmidtko S.  2014.  The surface diurnal warm layer in the Indian Ocean during CINDY/DYNAMO. Journal of Climate. 27:9101-9122.   10.1175/jcli-d-14-00222.1   AbstractWebsite

A surface diurnal warm layer is diagnosed from Seaglider observations and develops on half of the days in the Cooperative Indian Ocean Experiment on Intraseasonal Variability/Dynamics of the Madden-Julian Oscillation (CINDY/DYNAMO) Indian Ocean experiment. The diurnal warm layer occurs on days of high solar radiation flux (>80 W m(-2)) and low wind speed (<6 ms(-1)) and preferentially in the inactive stage of the Madden-Julian oscillation. Its diurnal harmonic has an exponential vertical structure with a depth scale of 4-5m (dependent on chlorophyll concentration), consistent with forcing by absorption of solar radiation. The effective sea surface temperature (SST) anomaly due to the diurnal warm layer often reaches 0.8 degrees C in the afternoon, with a daily mean of 0.2 degrees C, rectifying the diurnal cycle onto longer time scales. This SST anomaly drives an anomalous flux of 4Wm(-2) that cools the ocean. Alternatively, in a climate model where this process is unresolved, this represents an erroneous flux that warms the ocean. A simple model predicts a diurnal warm layer to occur on 30%-50% of days across the tropical warm pool. On the remaining days, with low solar radiation and high wind speeds, a residual diurnal cycle is observed by the Seaglider, with a diurnal harmonic of temperature that decreases linearly with depth. As wind speed increases, this already weak temperature gradient decreases further, tending toward isothermal conditions.

Baranowski, DB, Flatau PJ, Chen S, Black PG.  2014.  Upper ocean response to the passage of two sequential typhoons. Ocean Science. 10:559-570.   10.5194/os-10-559-2014   AbstractWebsite

The atmospheric wind stress forcing and the oceanic response are examined for the period between 15 September 2008 and 6 October 2008, during which two typhoons - Hagupit and Jangmi - passed through the same region of the western Pacific at Saffir-Simpson intensity categories one and three, respectively. A three-dimensional oceanic mixed layer model is compared against the remote sensing observations as well as high-repetition Argo float data. Numerical model simulations suggested that magnitude of the cooling caused by the second typhoon, Jangmi, would have been significantly larger if the ocean had not already been influenced by the first typhoon, Hagupit. It is estimated that the temperature anomaly behind Jangmi would have been about 0.4 degrees C larger in both cold wake and left side of the track. The numerical simulations suggest that the magnitude and position of Jangmi's cold wake depends on the precursor state of the ocean as well as lag between typhoons. Based on sensitivity experiments we show that temperature anomaly difference between "single typhoon" and "two typhoons" as well as magnitude of the cooling strongly depends on the distance between them. The amount of kinetic energy and coupling with inertial oscillations are important factors for determining magnitude of the temperature anomaly behind moving typhoons. This paper indicates that studies of ocean-atmosphere tropical cyclone interaction will benefit from denser, high-repetition Argo float measurements.