Publications

Export 5 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L [M] N O P Q R S T U V W X Y Z   [Show ALL]
M
Welton, EJ, Voss KJ, Quinn PK, Flatau PJ, Markowicz K, Campbell JR, Spinhirne JD, Gordon HR, Johnson JE.  2002.  Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars. Journal of Geophysical Research-Atmospheres. 107   10.1029/2000jd000038   AbstractWebsite

[1] Micropulse lidar (MPL) systems were used to measure aerosol properties during the Indian Ocean Experiment (INDOEX) 1999 field phase. Measurements were made from two platforms: the NOAA ship R/V Ronald H. Brown, and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sun photometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical properties (at 523 nm) of aerosols observed during the campaign. The height of the highest aerosols (top height) was calculated and found to be below 4 km for most of the cruise. The marine boundary layer (MBL) top was calculated and found to be less than 1 km. MPL results were combined with air mass trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical measurements. Humidity varied from approximately 80% near the surface to 50% near the top height during the entire cruise. The average value and standard deviation of aerosol optical parameters were determined for characteristic air mass regimes. Marine aerosols in the absence of any continental influence were found to have an AOD of 0.05+/-0.03, an extinction-to-backscatter ratio (S ratio) of 33+/-6 sr, and peak extinction values around 0.05 km(-1) (near the MBL top). The marine results are shown to be in agreement with previously measured and expected values. Polluted marine areas over the Indian Ocean, influenced by continental aerosols, had AOD values in excess of 0.2, S ratios well above 40 sr, and peak extinction values approximately 0.20 km(-1) (near the MBL top). The polluted marine results are shown to be similar to previously published values for continental aerosols. Comparisons between MPL derived extinction near the ship (75 m) and extinction calculated at ship level using scattering measured by a nephelometer and absorption using a particle soot absorption photometer were conducted. The comparisons indicated that the MPL algorithm (using a constant S ratio throughout the lower troposphere) calculates extinction near the surface in agreement with the ship-level measurements only when the MBL aerosols are well mixed with aerosols above. Finally, a review of the MPL extinction profiles showed that the model of aerosol vertical extinction developed during an earlier INDOEX field campaign (at the Maldives) did not correctly describe the true vertical distribution over the greater Indian Ocean region. Using the average extinction profile and AOD obtained during marine conditions, a new model of aerosol vertical extinction was determined for marine atmospheres over the Indian Ocean. A new model of aerosol vertical extinction for polluted marine atmospheres was also developed using the average extinction profile and AOD obtained during marine conditions influenced by continental aerosols.

Conant, WC, Seinfeld JH, Wang J, Carmichael GR, Tang YH, Uno I, Flatau PJ, Markowicz KM, Quinn PK.  2003.  A model for the radiative forcing during ACE-Asia derived from CIRPAS Twin Otter and R/V Ronald H. Brown data and comparison with observations. Journal of Geophysical Research-Atmospheres. 108   10.1029/2002jd003260   AbstractWebsite

Vertical profiles of aerosol size, composition, and hygroscopic behavior from Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter and National Oceanic and Atmospheric Administration R/V Ronald H. Brown observations are used to construct a generic optical model of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) aerosol. The model accounts for sulfate, black carbon, organic carbon, sea salt, and mineral dust. The effects of relative humidity and mixing assumptions (internal versus external, coating of dust by pollutants) are explicitly accounted for. The aerosol model is integrated with a Monte Carlo radiative transfer model to compute direct radiative forcing in the solar spectrum. The predicted regional average surface aerosol forcing efficiency (change in clear-sky radiative flux per unit aerosol optical depth at 500 nm) during the ACE-Asia intensive period is -65 Wm(-2) for pure dust and -60 Wm(-2) for pure pollution aerosol (clear skies). A three-dimensional atmospheric chemical transport model (Chemical Weather Forecast System (CFORS)) is used with the radiative transfer model to derive regional radiative forcing during ACE-Asia in clear and cloudy skies. Net regional solar direct radiative forcing during the 5-15 April 2001 dust storm period is -3 Wm(-2) at the top of the atmosphere and -17 Wm(-2) at the surface for the region from 20degreesN to 50degreesN and 100degreesE to 150degreesE when the effects of clouds on the direct forcing are included. The model fluxes and forcing efficiencies are found to be in good agreement with surface radiometric observations made aboard the R. H. Brown. Mean cloud conditions are found to moderate the top of atmosphere (TOA) radiative forcing by a factor of similar to3 compared to clear-sky calculations, but atmospheric absorption by aerosol is not strongly affected by clouds in this study. The regional aerosol effect at the TOA ("climate forcing") of -3 Wm(-2) is comparable in magnitude, but of opposite sign, to present-day anthropogenic greenhouse gas forcing. The forcing observed during ACE-Asia is similar in character to that seen during other major field experiments downwind of industrial and biomass black carbon sources (e.g., the Indian Ocean Experiment (INDOEX)), insofar as the primary effect of aerosol is to redistribute solar heating from the surface to the atmosphere.

Remiszewska, J, Flatau PJ, Markowicz KM, Reid EA, Reid JS, Witek ML.  2007.  Modulation of the aerosol absorption and single-scattering albedo due to synoptic scale and sea breeze circulations: United Arab Emirates experiment perspective. Journal of Geophysical Research-Atmospheres. 112   10.1029/2006jd007139   AbstractWebsite

The spectral aerosol absorption properties in the Arabian Gulf region were observed during the United Arab Emirates Unified Aerosol Experiment (UAE(2)). Measurements were taken at a coastal region of the Arabian Gulf located 60 km northeast of Abu Dhabi, the capital of the United Arab Emirates, allowing characterization of pollution and dust absorption properties in a highly heterogeneous environment. A large observed change of the diurnal signal during the period under study ( 27 August through 30 September 2004) was due to ( 1) strong sea and land breeze and ( 2) changes in prevailing synoptic-scale flow. During the night, stagnating air resulted in gradual accumulation of pollution with maximum absorption in the early morning hours. The rising sun increased both the depth of the boundary layer and the temperature of the interior desert, resulting in strong and sudden sea breeze onset which ventilated the polluted air accumulated during the night. Our observations show that the onshore winds brought cleaner air resulting in decreasing values of the absorption coefficient and increasing values of the single-scattering albedo (SSA). The mean value of the absorption coefficient at 550 nm measured during the sea breeze was 10.2 +/- 0.9 Mm(-1), while during the land breeze it was 13.8 +/- 1.2 Mm(-1). Synoptic- scale transport also strongly influenced particle fine/ coarse partition with "northern'' flow bringing pollution particles and "southern'' flow bringing more dust.

Piskozub, J, Flatau PJ, Zaneveld JVR.  2001.  Monte Carlo study of the scattering error of a quartz reflective absorption tube. Journal of Atmospheric and Oceanic Technology. 18:438-445.   10.1175/1520-0426(2001)018<0438:mcsots>2.0.co;2   AbstractWebsite

A Monte Carlo model was used to study the scattering error of an absorption meter with a divergent light beam and a limited acceptance angle of the receiver. Reflections at both ends of the tube were taken into account. Calculations of the effect of varying optical properties of water as well as the receiver geometry were performed. A weighting function showing the scattering error quantitatively as a function of angle was introduced. Some cases of practical interest are discussed.

Baranowski, DB, Flatau MK, Flatau PJ, Schmidt JM.  2017.  Multiple and spin off initiation of atmospheric convectively coupled Kelvin waves. Climate Dynamics. 49:2991-3009.   10.1007/s00382-016-3487-7   AbstractWebsite

A novel atmospheric convectively coupled Kelvin wave trajectories database, derived from Tropical Rainfall Measuring Mission precipitation data, is used to investigate initiation of sequential Kelvin wave events. Based on the analysis of beginnings of trajectories from years 1998-2012 it is shown that sequential event initiations can be divided into two distinct categories: multiple initiations and spin off initiations, both of which involve interactions with ocean surface and upper ocean temperature variability. The results of composite analysis of the 83 multiple Kelvin wave initiations show that the local thermodynamic forcing related to the diurnal sea surface temperature variability is responsible for sequential Kelvin wave development. The composite analysis of 91 spin off Kelvin wave initiations shows that the dynamic forcing is a dominant effect and the local thermodynamic forcing is secondary. Detail case studies of both multiple and spin off initiations confirm statistical analysis. A multiple initiation occurs in the presence of the high upper ocean diurnal cycle and a spin off initiation results from both dynamic and local thermodynamic processes. The dynamic forcing is related to increased wind speed and latent heat flux likely associated with an off equatorial circulation. In addition a theoretical study of the sequential Kelvin waves is performed using a shallow water model. Finally, conceptual models of these two types of initiations are proposed.