Export 5 results:
Sort by: Author Title Type [ Year  (Desc)]
Schmidt, JM, Flatau PJ, Yates RD.  2014.  Convective cells in altocumulus observed with a high-resolution radar. Journal of the Atmospheric Sciences. 71:2130-2154.   10.1175/jas-d-13-0172.1   AbstractWebsite

Very-high-resolution Doppler radar observations are used together with aircraft measurements to document the dynamic and thermodynamic structure of a dissipating altocumulus cloud system associated with a deep virga layer. The cloud layer circulation is shown to consist of shallow vertical velocity couplets near cloud top and a series of subkilometer-scale Rayleigh-Benard-like cells that extend vertically through the depth of the cloud layer. The subcloud layer was observed to contain a number of narrow virga fall streaks that developed below the more dominant Rayleigh-Benard updraft circulations in the cloud layer. These features were discovered to be associated with kilometer-scale horizontally orientated rotor circulations that formed along the lateral flanks of the streaks collocated downdraft circulation. The Doppler analysis further reveals that a layer mean descent was present throughout both the cloud and subcloud layers. This characteristic of the circulation is analyzed with regard to the diabatic and radiative forcing on horizontal length scales ranging from the Rayleigh-Benard circulations to the overall cloud layer width. In particular, linear analytical results indicate that a deep and broad mesoscale region of subsidence is quickly established in middle-level cloud layers of finite width when a layer-wide horizontal gradient in the cloud-top radiative cooling rate is present. A conceptual model summarizing the primary observed and inferred circulation features of the altocumulus layer is presented.

Markowicz, KM, Flatau PJ, Kardas AE, Remiszewska J, Stelmaszczyk K, Woeste L.  2008.  Ceilometer retrieval of the boundary layer vertical aerosol extinction structure. Journal of Atmospheric and Oceanic Technology. 25:928-944.   10.1175/2007jtecha1016.1   AbstractWebsite

The CT25K ceilometer is a general-purpose cloud height sensor employing lidar technology for detection of clouds. In this paper it is shown that it can also be used to retrieve aerosol optical properties in the boundary layer. The authors present a comparison of the CT25K instrument with the aerosol lidar system and discuss its good overall agreement for both the range-corrected signals and the retrieved extinction coefficient profiles. The CT25K aerosol profiling is mostly limited to the boundary layer, but it is capable of detecting events in the lower atmosphere such as mineral dust events between 1 and 3 km. Assumptions needed for the estimation of the aerosol extinction profiles are discussed. It is shown that, when a significant part of the aerosol layer is in the boundary layer, knowledge of the aerosol optical depth from a sun photometer allows inversion of the lidar signal. In other cases, surface observations of the aerosol optical properties are used. It is demonstrated that additional information from a nephelometer and aethalometer allows definition of the lidar ratio. Extinction retrievals based on spherical and randomly oriented spheroid assumptions are performed. It is shown, by comparison with the field measurements during the United Arab Emirates Unified Aerosol Experiment, that an assumption about specific particle shape is important for the extinction profile inversions. The authors indicate that this limitation of detection is a result of the relatively small sensitivity of this instrument in comparison to more sophisticated aerosol lidars. However, in many cases this does not play a significant role because globally only about 20% of the aerosol optical depth is above the boundary layer.

Markowicz, KM, Flatau PJ, Vogelmann AM, Quinn PK, Welton EJ.  2003.  Clear-sky infrared aerosol radiative forcing at the surface and the top of the atmosphere. Quarterly Journal of the Royal Meteorological Society. 129:2927-2947.   10.1256/qj.02.224   AbstractWebsite

We study the aerosol radiative forcing at infrared (IR) wavelengths using data from the Aerosol Characterization Experiment. ACE-Asia, cruise of the National Oceanic and Atmospheric Administration research vessel Ronald H. Brown. The analyses apply to the daytime periods of clear-sky conditions for the area within the immediate vicinity of the ship. An optical model is derived from chemical measurements, lidar profiles, and visible-extinction measurements, which are used to estimate the IR aerosol optical thickness and the single-scattering albedo. The IR model results are compared to detailed Fourier transform interferometer-based IR aerosol forcing estimates, pyrgeometer-based IR downward fluxes, and to observations of the direct aerosol solar forcing. This combined approach attests to the self-consistency of the optical model, and allows us to derive quantities such as the IR forcing at the top of the atmosphere (TOA) and the IR optical thickness. The mean IR aerosol optical thickness at 10 mum is 0.08 and the single-scattering albedo is 0.55. The modelled IR aerosol surface forcing reaches 10 W m(-2) during the cruise, which is a significant contribution compared to the total direct aerosol forcing. The surface IR aerosol radiative forcing is between 10 and 25% of the short-wave aerosol forcing. The IR aerosol forcing at the TOA can be up to 19% of the solar aerosol forcing. We show good agreement between TOA aerosol IR forcing derived from the model and from the CERES (Clouds and the Earth's Radiant Energy System) satellite data. Over the Sea of Japan, the average IR aerosol radiative forcing is 4.6 W m(-2) at the surface. and 1.5 W m(-2) at the TOA. The IR forcing efficiency at the TOA is a strong function of aerosol temperature (which is coupled to vertical structure) and changes between 10 and 18 W m(-2) (per IR optical depth unit), while the surface IR forcing efficiency varies between 37 and 55 W m(-2) (per IR optical depth unit).

Markowicz, KM, Flatau PJ, Quinn PK, Carrico CM, Flatau MK, Vogelmann AM, Bates D, Liu M, Rood MJ.  2003.  Influence of relative humidity on aerosol radiative forcing: An ACE-Asia experiment perspective. Journal of Geophysical Research-Atmospheres. 108   10.1029/2002jd003066   AbstractWebsite

We present direct radiometric observations of aerosol radiative forcing during the ACE-Asia experiment (March and April of 2001). The observational analysis is based on radiometer data obtained from the NOAA ship Ronald H. Brown, and shipboard measurements of the aerosol chemical and scattering properties are used to construct a model of the aerosol optical properties for use in radiative transfer calculations. The model is validated against the radiometric observations and is used to diagnose the aerosol and environmental factors that contribute to the observed forcings. The mean value of aerosol optical thickness observed during the ACE-Asia cruise over the Sea of Japan was 0.43 (+/-0.25) at 500 nm, while the single-scattering albedo was 0.95 (+/-0.03) at ambient relative humidity. We find a large correlation (r(2) = 0.69) between single-scattering albedo and relative humidity. Aerosols caused a mean decrease in the diurnally averaged solar radiation of 26.1 W m(-2) at the surface, while increasing the atmospheric solar absorption and top of atmosphere reflected solar radiation by 13.4 W m(-2) and 12.7 W m(-2), respectively. The mean surface aerosol forcing efficiency (forcing per unit optical depth) over the Sea of Japan was -60 W m(-2) and is influenced by high values of relative humidity. We show that decreasing the relative humidity to 55% enhances the aerosol forcing efficiency by as much as 6-10 W m(-2). This dependency on relative humidity has implications for comparisons of aerosol forcing efficiencies between different geographical locations.

Flatau, M, Flatau PJ, Phoebus P, Niller PP.  1997.  The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. Journal of the Atmospheric Sciences. 54:2373-2386.   10.1175/1520-0469(1997)054<2373:tfbeca>;2   AbstractWebsite

Existing theories of the Madden-Julian oscillation neglect the feedback between the modification of sea surface temperature by the convection and development of a convective cluster itself. The authors show that the convection-generated SST gradient plays an important role in cluster propagation and development. The relative importance of radiative and evaporative fluxes in SST regulation is also discussed. Various Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment and Central Equatorial Pacific Experiment observation platforms are used to estimate the effects of equatorial convection on SST changes during March 1993. The data include drifting buoys and TAO-buoy array measurements, combined with the Navy Operational Global Atmospheric Prediction System analyzed surface wind fields and Geostationary Meteorological Satellite cloud-top temperatures. It is shown that during the equatorial convection episode SST is decreasing under and to the west of the convective heat source due to the large wind velocities and solar flux reduction. To the east of the source, in the convergence region of a Kelvin wave, low wind speeds and high insolation cause the SST to increase. The data are used to formulate an empirical relationship between wind speed and the 24-h SST change on the equator. Although formulated in terms of wind speed, this relationship implicitly includes radiative effects. This equation is then used in a global circulation model to examine the effect of SST feedback on the behavior of equatorial convection. A series of experiments is performed using an R15 general circulation model of the ''aquaplanet'' with a zonally symmetric SST distribution. In the case with fixed SSTs, equatorial wind fluctuations have the character of waves propagating around the globe with a phase speed of about 20 m s(-1). When the effect of SST modification is included, the fluctuations slow down and become more organized. In addition, a 40-60-day peak appears in the spectral analysis of equatorial precipitation.