Publications

Export 18 results:
Sort by: [ Author  (Desc)] Title Type Year
A B C D E [F] G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
F
Flatau, M, Stevens DE.  1993.  The Role of Outflow-Layer Instabilities in Tropical Cyclone Motion. Journal of the Atmospheric Sciences. 50:1721-1733.   10.1175/1520-0469(1993)050<1721:trooli>2.0.co;2   AbstractWebsite

The paper examines the role of the development of outflow-layer instabilities on the motion of tropical cyclones. The influence of barotropic instability is examined by comparing the time changes in the storm tracks with the frequencies of free, unstable barotropic modes. For intense vortices barotropic instability is shown to contribute to the slow (periods of a few days) trochoidal motion of a cyclone. The development of instability depends on the horizontal distribution and frequency of environmental forcing. The strongest response occurs when the frequency of the forcing matches the frequency of an unstable mode.

Flatau, PJ.  2004.  Fast solvers for one dimensional light scattering in the discrete dipole approximation. Optics Express. 12:3149-3155.   10.1364/OPEX.12.003149   AbstractWebsite

In this paper we propose new algorithms for solution of light scattering on non-spherical particles using one-dimensional variant of discrete dipole approximation. We discuss recent advances in algorithms for matrices with structures in context of the discrete dipole approximation and show that it is possible to apply these advances to form non-iterative solvers and improve algorithmic complexity in case of many incoming plane parallel waves. (C) 2004 Optical Society of America.

Flatau, M, Flatau PJ, Phoebus P, Niller PP.  1997.  The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. Journal of the Atmospheric Sciences. 54:2373-2386.   10.1175/1520-0469(1997)054<2373:tfbeca>2.0.co;2   AbstractWebsite

Existing theories of the Madden-Julian oscillation neglect the feedback between the modification of sea surface temperature by the convection and development of a convective cluster itself. The authors show that the convection-generated SST gradient plays an important role in cluster propagation and development. The relative importance of radiative and evaporative fluxes in SST regulation is also discussed. Various Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment and Central Equatorial Pacific Experiment observation platforms are used to estimate the effects of equatorial convection on SST changes during March 1993. The data include drifting buoys and TAO-buoy array measurements, combined with the Navy Operational Global Atmospheric Prediction System analyzed surface wind fields and Geostationary Meteorological Satellite cloud-top temperatures. It is shown that during the equatorial convection episode SST is decreasing under and to the west of the convective heat source due to the large wind velocities and solar flux reduction. To the east of the source, in the convergence region of a Kelvin wave, low wind speeds and high insolation cause the SST to increase. The data are used to formulate an empirical relationship between wind speed and the 24-h SST change on the equator. Although formulated in terms of wind speed, this relationship implicitly includes radiative effects. This equation is then used in a global circulation model to examine the effect of SST feedback on the behavior of equatorial convection. A series of experiments is performed using an R15 general circulation model of the ''aquaplanet'' with a zonally symmetric SST distribution. In the case with fixed SSTs, equatorial wind fluctuations have the character of waves propagating around the globe with a phase speed of about 20 m s(-1). When the effect of SST modification is included, the fluctuations slow down and become more organized. In addition, a 40-60-day peak appears in the spectral analysis of equatorial precipitation.

Flatau, PJ, Pielke RA, Cotton WR.  1988.  Application of symbolic algebra to the generation of coordinate transformations . Environmental Software. 3:158-160. Abstract

In this paper we present tools for automatic generation of generalized (variable and terrain-following) coordinate transformations and its use in numerical models of atmospheric flows. Such methodology should be competitive with the more cornraonly employed nested grid schemes. We discuss the symbolic (computer) algebra program for analytical calculation of Christoffel symbols, metric tensor and other geometrical objects describing a transformation. An example, related to the numerical modeling of mesoscale flows, is given. This example shows how coupled terrain-following m~d stretching transformation can be easily created. The possible application of such methodology in numerical modeling of air pollution on cirrus clouds is briefly discussed.

Flatau, PJ, Flatau M, Zaneveld JRV, Mobley CD.  2000.  Remote sensing of bubble clouds in sea water. Quarterly Journal of the Royal Meteorological Society. 126:2511-2523.   10.1256/smsqj.56807   AbstractWebsite

We report on the influence of submerged bubble clouds on the remote-sensing properties of water. We show that the optical effect of bubbles on radiative transfer and on the estimate of the ocean colour is significant. We present a global map of the volume fraction of air in water derived from daily wind speed data. This map. together with the parametrization of the microphysical properties, shows the possible significance of bubble clouds on the albedo to incoming solar energy.

Flatau, PJ, Walko RL, Cotton WR.  1992.  Polynomial Fits to Saturation Vapor-Pressure. Journal of Applied Meteorology. 31:1507-1513.   10.1175/1520-0450(1992)031<1507:pftsvp>2.0.co;2   AbstractWebsite

The authors describe eighth- and sixth-order polynomial fits to Wexler's and Hyland-Wexler's saturation-vapor-pressure expressions. Fits are provided in both least-squares and relative-error norms. Error analysis is presented. The authors show that their method is faster in comparison with the reference expressions when implemented on a CRAY-YMP.

Flatau, MK, Talley L, Niiler PP.  2003.  The North Atlantic Oscillation, surface current velocities, and SST changes in the subpolar North Atlantic. Journal of Climate. 16:2355-2369.   10.1175/2787.1   AbstractWebsite

Changes in surface circulation in the subpolar North Atlantic are documented for the recent interannual switch in the North Atlantic Oscillation (NAO) index from positive values in the early 1990s to negative values in 1995/96. Data from Lagrangian drifters, which were deployed in the North Atlantic from 1992 to 1998, were used to compute the mean and varying surface currents. NCEP winds were used to calculate the Ekman component, allowing isolation of the geostrophic currents. The mean Ekman velocities are considerably smaller than the mean total velocities that resemble historical analyses. The northeastward flow of the North Atlantic Current is organized into three strong cores associated with topography: along the eastern boundary in Rockall Trough, in the Iceland Basin ( the subpolar front), and on the western flank of the Reykjanes Ridge (Irminger Current). The last is isolated in this Eulerian mean from the rest of the North Atlantic Current by a region of weak velocities on the east side of the Reykjanes Ridge. The drifter results during the two different NAO periods are compared with geostrophic flow changes calculated from the NASA/Pathfinder monthly gridded sea surface height (SSH) variability products and the Advanced Very High Resolution Radiometer (AVHRR) SST data. During the positive NAO years the northeastward flow in the North Atlantic Current appeared stronger and the circulation in the cyclonic gyre in the Irminger Basin became more intense. This was consistent with the geostrophic velocities calculated from altimetry data and surface temperature changes from AVHRR SST data, which show that during the positive NAO years, with stronger westerlies, the subpolar front was sharper and located farther east. SST gradients intensified in the North Atlantic Current, Irminger Basin, and east of the Shetland Islands during the positive NAO phase, associated with stronger currents. SST differences between positive and negative NAO years were consistent with changes in air-sea heat flux and the eastward shift of the subpolar front. SST advection, as diagnosed from the drifters, likely acted to reduce the SST differences.

Flatau, M, Schubert WH, Stevens DE.  1994.  The Role of Baroclinic Processes in Tropical Cyclone Motion - the Influence of Vertical Tilt. Journal of the Atmospheric Sciences. 51:2589-2601.   10.1175/1520-0469(1994)051<2589:trobpi>2.0.co;2   AbstractWebsite

The numerical study presented here focuses on baroclinic processes that contribute to tropical cyclone (TC) propagation. A three-dimensional, semispectral, primitive equation model of baroclinic vortex was developed to study TC motion. In a tiled vortex, interaction between upper- and lower-level vorticity anomalies leads to vortex propagation relative to the steering flow. On a beta plane, with no environmental flow, the vortex is tilted toward the south and the interaction between the layers reduces the westward movement of the vortex. The vortex tilting can also occur due to the vertical shear in the environmental wind. On an f plane, the interaction between the layers causes the northward movement of the vortex in westerly linear shear, and southward movement in easterly linear shear, with a meridional velocity of about 1 ms-1. This velocity increases with increasing vortex intensity and vertical motion.

Flatau, PJ.  1978.  Kinetics of Intraband Absorption and Magnetoabsorption Coefficients in Mixed Semiconductors with Composition Fluctuations. Physica Status Solidi B-Basic Research. 90:251-260.   10.1002/pssb.2220900127   AbstractWebsite

The influence of short-range ordering in a mixed semiconductor on the intraband absorption and magnetoabsorption coefficients is determined. The coefficients are shown to be temperature-dependent. Their time-evolution after changing the temperature is calculated. An experiment, permitting measurements of the degree of ordering (non-ideality) in alloys is proposed, and a numerical example for HgTe–CdTe is given.

Flatau, PJ, Piskozub J, Zaneveld JRV.  1999.  Asymptotic light field in the presence of a bubble-layer. Optics Express. 5:120-124.   10.1364/OE.5.000120   AbstractWebsite

We report that the submerged microbubbles are an efficient source of diffuse radiance and may contribute to a rapid transition to the diffuse asymptotic regime. In this asymptotic regime an average cosine is easily predictable and measurable. (C) 1999 Optical Society of America.

Flatau, PJ, Stephens GL, Draine BT.  1990.  Light-Scattering by Rectangular Solids in the Discrete-Dipole Approximation - a New Algorithm Exploiting the Block-Toeplitz Structure. Journal of the Optical Society of America a-Optics Image Science and Vision. 7:593-600.   10.1364/josaa.7.000593   AbstractWebsite

The discrete-dipole approximation is used to study the problem of light scattering by homogeneous rectangular particles. The structure of the discrete-dipole approximation is investigated, and the matrix formed by this approximation is identified to be a symmetric, block-Toeplitz matrix. Special properties of block-Toeplitz arrays are explored, and an efficient algorithm to solve the dipole scattering problem is provided. Timings for conjugate gradient, Linpack, and block-Toeplitz solvers are given; the results indicate the advantages of the block-Toeplitz algorithm. A practical test of the algorithm was performed on a system of 1400 dipoles, which corresponds to direct inversion of an 8400 × 8400 real matrix. A short discussion of the limitations of the discrete-dipole approximation is provided, and some results for cubes and parallelepipeds are given. We briefly consider how the algorithm may be improved further.

Flatau, MK, Flatau PJ, Schmidt J, Kiladis GN.  2003.  Delayed onset of the 2002 Indian monsoon. Geophysical Research Letters. 30   10.1029/2003gl017434   AbstractWebsite

[1] We show that there is a set of dynamical predictors, which facilitate forecasting of a delayed monsoon onset. The main dynamical contributor is the early May propagation of the "bogus onset Intraseasonal Oscillation'' which triggers a set of events precluding the climatological monsoon onset. We analyze in detail the 2002 monsoon onset and show that it followed a pattern described in our previous study. We notice that the 2003 monsoon onset followed very similar pattern and was delayed.

Flatau, PJ, Fuller KA, Mackowski DW.  1993.  Scattering by 2 Spheres in Contact - Comparisons between Discrete-Dipole Approximation and Modal-Analysis. Applied Optics. 32:3302-3305.   10.1364/AO.32.003302   AbstractWebsite

This paper applies two different techniques to the problem of scattering by two spheres in contact: modal analysis, which is an exact method, and the discrete-dipole approximation (DDA). Good agreement is obtained, which further demonstrates the utility of the DDA to scattering problems for irregular particles. The choice of the DDA polarizability scheme is discussed in detail. We show that the lattice dispersion relation provides excellent improvement over the Clausius-Mossoti polarizability parameterization.

Flatau, PJ, Draine BT.  2012.  Fast near field calculations in the discrete dipole approximation for regular rectilinear grids. Optics Express. 20:1247-1252.   10.1364/OE.20.001247   AbstractWebsite

A near-field calculation of light electric field intensity inside and in the vicinity of a scattering particle is discussed in the discrete dipole approximation. A fast algorithm is presented for gridded data. This algorithm is based on one matrix times vector multiplication performed with the three dimensional fast Fourier transform. It is shown that for moderate and large light scattering near field calculations the computer time required is reduced in comparison to some of the other methods. (C) 2012 Optical Society of America

Flatau, PJ, Draine BT.  2014.  Light scattering by hexagonal columns in the discrete dipole approximation. Optics Express. 22:21834-21846.   10.1364/oe.22.021834   AbstractWebsite

Scattering by infinite hexagonal ice prisms is calculated using Maxwell's equations in the discrete dipole approximation for size parameters x = pi D/lambda up to x = 400 (D = prism diameter). Birefringence is included in the calculations. Applicability of the geometric optics approximation is investigated. Excellent agreement between wave optics and geometric optics is observed for large size parameter in the outer part of the 22 degree halo feature. For smaller ice crystals halo broadening is predicted, and there is appreciable "spillover" of the halo into shadow scattering angles < 22 degrees. Ways to retrieve ice crystal sizes are suggested based on the full width at half-maximum of the halo, the power at < 22deg, and the halo polarization. (C) 2014 Optical Society of America

Flatau, PJ.  1997.  Improvements in the discrete-dipole approximation method of computing scattering and absorption. Optics Letters. 22:1205-1207.   10.1364/ol.22.001205   AbstractWebsite

Improvements in complex-conjugate gradient algorithms applied to the discrete-dipole approximation are reported. It is shown that computational time is reduced by use of the stabilized version of the biconjugate gratings algorithm, with diagonal left preconditioning. (C) 1997 Optical Society of America.

Flatau, PJ, Stephens GL.  1988.  On the Fundamental Solution of the Radiative-Transfer Equation. Journal of Geophysical Research-Atmospheres. 93:11037-11050.   10.1029/JD093iD09p11037   AbstractWebsite

This paper outlines the general solution of the one-dimensional, azimuthally averaged radiative transfer equation in terms of a matrix exponential. The link between this fundamental solution and those more commonly used in radiative transfer is established. The formulation is developed for a general vertically inhomogeneous atmosphere with sources. Several new concepts, based on properties of the matrix exponentials, are described in the context of radiative transfer, including the use of the commutator and product integrals. It is also demonstrated how the matrix exponential formulation provides for new insights, not only into improvements of the numerical efficiency and stability of the solution, but also into the understanding of radiative transfer through a layered atmosphere. The various concepts introduced in this paper are illustrated throughout by the two-stream simplification of the general radiative transfer equation.

Flatau, MK, Flatau PJ, Rudnick D.  2001.  The dynamics of double monsoon onsets. Journal of Climate. 14:4130-4146.   10.1175/1520-0442(2001)014<4130:tdodmo>2.0.co;2   AbstractWebsite

Double monsoon onset develops when the strong convection in the Bay of Bengal is accompanied by the monsoonlike circulation and appears in the Indian Ocean in early May, which is about 3 weeks earlier than the climatological date of the onset (1 Jun). The initial "bogus onset'' is followed by the flow weakening or reversal and clear-sky and dry conditions over the monsoon region. The best example of such a phenomenon is the development of the summer monsoon in 1995, when monsoonlike perturbations that appeared in mid-May disappeared by the end of the month and were followed by a heat wave in India, delaying onset of the monsoon. The climatology of double onsets is analyzed, and it is shown that they are associated with delay of the monsoon rainfall over India. This analysis indicates that the development of bogus onsets depends on the timing of intraseasonal oscillation in the Indian Ocean and the propagation of convective episodes into the western Pacific. There is evidence that an SST evolution in the Bay of Bengal and the western Pacific plays an important role in this phenomenon. It is shown that in the case of the double monsoon onset it is possible to predict hot and dry conditions in India before the real monsoon onset. In the 32 yr of climatological data, six cases of double monsoon onset were identified.