Publications

Export 4 results:
Sort by: [ Author  (Desc)] Title Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
C
Cotton, WR, Walko RL, Costignan KR, Flatau PJ, Pielke RA.  1993.  Using Regional Atmospheric Modeling System n the Large Eddy Simulation mode: From in homogenous surfaces to cirrus clouds. Large eddy simulation of complex engineering and geophysical flows. ( Galperin B, Orszag SA, Eds.).:369-398., Cambridge [England]; New York, NY, USA: Cambridge University Press Abstract
n/a
Conant, WC, Seinfeld JH, Wang J, Carmichael GR, Tang YH, Uno I, Flatau PJ, Markowicz KM, Quinn PK.  2003.  A model for the radiative forcing during ACE-Asia derived from CIRPAS Twin Otter and R/V Ronald H. Brown data and comparison with observations. Journal of Geophysical Research-Atmospheres. 108   10.1029/2002jd003260   AbstractWebsite

Vertical profiles of aerosol size, composition, and hygroscopic behavior from Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter and National Oceanic and Atmospheric Administration R/V Ronald H. Brown observations are used to construct a generic optical model of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) aerosol. The model accounts for sulfate, black carbon, organic carbon, sea salt, and mineral dust. The effects of relative humidity and mixing assumptions (internal versus external, coating of dust by pollutants) are explicitly accounted for. The aerosol model is integrated with a Monte Carlo radiative transfer model to compute direct radiative forcing in the solar spectrum. The predicted regional average surface aerosol forcing efficiency (change in clear-sky radiative flux per unit aerosol optical depth at 500 nm) during the ACE-Asia intensive period is -65 Wm(-2) for pure dust and -60 Wm(-2) for pure pollution aerosol (clear skies). A three-dimensional atmospheric chemical transport model (Chemical Weather Forecast System (CFORS)) is used with the radiative transfer model to derive regional radiative forcing during ACE-Asia in clear and cloudy skies. Net regional solar direct radiative forcing during the 5-15 April 2001 dust storm period is -3 Wm(-2) at the top of the atmosphere and -17 Wm(-2) at the surface for the region from 20degreesN to 50degreesN and 100degreesE to 150degreesE when the effects of clouds on the direct forcing are included. The model fluxes and forcing efficiencies are found to be in good agreement with surface radiometric observations made aboard the R. H. Brown. Mean cloud conditions are found to moderate the top of atmosphere (TOA) radiative forcing by a factor of similar to3 compared to clear-sky calculations, but atmospheric absorption by aerosol is not strongly affected by clouds in this study. The regional aerosol effect at the TOA ("climate forcing") of -3 Wm(-2) is comparable in magnitude, but of opposite sign, to present-day anthropogenic greenhouse gas forcing. The forcing observed during ACE-Asia is similar in character to that seen during other major field experiments downwind of industrial and biomass black carbon sources (e.g., the Indian Ocean Experiment (INDOEX)), insofar as the primary effect of aerosol is to redistribute solar heating from the surface to the atmosphere.

Collins, WD, Valero FPJ, Flatau PJ, Lubin D, Grassl H, Pilewskie P.  1996.  Radiative effects of convection in the tropical Pacific. Journal of Geophysical Research-Atmospheres. 101:14999-15012.   10.1029/95jd02534   AbstractWebsite

The radiative effects of tropical clouds at the tropopause and the ocean surface have been estimated by using in situ measurements from the Central Equatorial Pacific Experiment (CEPEX). The effect of clouds is distinguished from the radiative effects of the surrounding atmosphere by calculating the shortwave and longwave cloud forcing. These terms give the reduction in insolation and the increase in absorption of terrestrial thermal emission associated with clouds. At the tropopause the shortwave and longwave cloud forcing are nearly equal and opposite, even on daily timescales. Therefore the net effect of an ensemble of convective clouds is small compared to other radiative terms in the surface-tropospheric heat budget. This confirms the statistical cancellation of cloud forcing observed in Earth radiation budget measurements from satellites. At the surface the net effect of clouds is to reduce the radiant energy absorbed by the ocean. Under deep convective clouds the diurnally averaged reduction exceeds 150 W m(-2). The divergence of flux in the cloudy atmosphere can be estimated from the difference in cloud forcing at the surface and tropopause. The CEPEX observations show that the atmospheric cloud forcing is nearly equal and opposite to the surface forcing. Based upon the frequency of convection, the atmospheric forcing approaches 100 W m(-2) when the surface temperature is 303 K. The cloud forcing is closely related to the frequency of convective cloud systems. This relation is used in conjunction with cloud population statistics derived from satellite to calculate the change in surface cloud forcing with sea surface temperature. The net radiative cooling of the surface by clouds increases at a rate of 20 W m(-2)K(-1)during the CEPEX observing period.

Collins, WD, Bucholtz A, Flatau P, Lubin D, Valero FPJ, Weaver CP, Pilewski P.  2000.  Determination of surface heating by convective cloud systems in the central equatorial Pacific from surface and satellite measurements. Journal of Geophysical Research-Atmospheres. 105:14807-14821.   10.1029/2000jd900109   AbstractWebsite

The heating of the ocean surface by longwave radiation from convective clouds has been estimated using measurements from the Central Equatorial Pacific Experiment (CEPEX). The ratio of the surface longwave cloud forcing to the cloud radiative forcing on the total atmospheric column is parameterized by the f factor. The f factor is a measure of the partitioning of the cloud radiative effect between the surface and the troposphere. Estimates of the f factor have been obtained by combining simultaneous observations from ship, aircraft, and satellite instruments. The cloud forcing near the ocean surface is determined from radiometers on board the National Oceanic and Atmospheric Administration P-3 aircraft and the R/V John Vickers. The longwave cloud forcing at the top of the atmosphere has been estimated from data obtained from the Japanese Geostationary Meteorological Satellite GMS 4. A new method for estimating longwave fluxes from satellite narrowband radiances is described. The method is based upon calibrating the satellite radiances against narrowband and broadband infrared measurements from the high-altitude NASA ER-2 aircraft. The average value of f derived from the surface and satellite observations of convective clouds is 0.15 +/- 0.02. The area-mean top-of-atmosphere longwave forcing by convective clouds in the region 10 degrees S-10 degrees N, 160 degrees E-160 degrees W is 40 W/m(2) during CEPEX. Those results indicate that the surface longwave forcing by convective clouds was approximately 5 W/m(2) in the central equatorial Pacific and that this forcing is the smallest radiative component of the surface energy budget.