Export 55 results:
Sort by: Author Title Type [ Year  (Desc)]
Schmidt, JM, Flatau PJ, Harasti PR.  2017.  Evidence for a nimbostratus uncinus in a convectively generated mixed-phase stratiform cloud shield. Journal of the Atmospheric Sciences. 74:4093-4116.   10.1175/jas-d-17-0074.1   AbstractWebsite

The structure of a melting layer associated with a mesoconvective system is examined using a combination of in situ aircraft measurements and a unique Doppler radar operated by the U.S. Navy that has a range resolution as fine as 0.5 m. Interest in this case was motivated by ground-based all-sky camera images that captured the transient development of midlevel billow cloud structures within a precipitating trailing stratiform cloud shield associated with a passing deep convective system. A sequence of high-fidelity time-height radar measurements taken of this storm system reveal that the movement of the billow cloud structure over the radar site corresponded with abrupt transitions in the observed low-level precipitation structure. Of particular note is an observed transition from stratiform to more periodic and vertically slanted rain shaft structures that both radar and aircraft measurements indicate have the same temporal periodicity determined to arise visually between successive billow cloud bands. Doppler, balloon, and aircraft measurements reveal these transient bands are associated with a shallow circulation field that resides just above the melting level in a layer of moist neutral stability and strong negative vertical wind shear. The nature of these circulations and their impact on the evolving precipitation field are described in the context of known nimbostratus cloud types.

Baranowski, DB, Flatau MK, Flatau PJ, Schmidt JM.  2017.  Multiple and spin off initiation of atmospheric convectively coupled Kelvin waves. Climate Dynamics. 49:2991-3009.   10.1007/s00382-016-3487-7   AbstractWebsite

A novel atmospheric convectively coupled Kelvin wave trajectories database, derived from Tropical Rainfall Measuring Mission precipitation data, is used to investigate initiation of sequential Kelvin wave events. Based on the analysis of beginnings of trajectories from years 1998-2012 it is shown that sequential event initiations can be divided into two distinct categories: multiple initiations and spin off initiations, both of which involve interactions with ocean surface and upper ocean temperature variability. The results of composite analysis of the 83 multiple Kelvin wave initiations show that the local thermodynamic forcing related to the diurnal sea surface temperature variability is responsible for sequential Kelvin wave development. The composite analysis of 91 spin off Kelvin wave initiations shows that the dynamic forcing is a dominant effect and the local thermodynamic forcing is secondary. Detail case studies of both multiple and spin off initiations confirm statistical analysis. A multiple initiation occurs in the presence of the high upper ocean diurnal cycle and a spin off initiation results from both dynamic and local thermodynamic processes. The dynamic forcing is related to increased wind speed and latent heat flux likely associated with an off equatorial circulation. In addition a theoretical study of the sequential Kelvin waves is performed using a shallow water model. Finally, conceptual models of these two types of initiations are proposed.

Baranowski, DB, Flatau MK, Flatau PJ, Matthews AJ.  2016.  Phase locking between atmospheric convectively coupled equatorial Kelvin waves and the diurnal cycle of precipitation over the Maritime Continent. Geophysical Research Letters. 43:8269-8276.   10.1002/2016gl069602   AbstractWebsite

Convectively coupled Kelvin waves (CCKWs) are a major component of the tropical atmospheric circulation, propagating eastward around the equatorial belt. Here we show that there are scale interactions between CCKWs and the diurnal cycle over the Maritime Continent. In particular, CCKW packets that pass a base point in the eastern Indian Ocean at 90 degrees E between 0600 and 0900UTC subsequently arrive over Sumatra in phase with the diurnal cycle of convection. As the distance between Sumatra and Borneo is equal to the distance traveled by a CCKW in 1day, these waves are then also in phase with the diurnal cycle over Borneo. Consequently, this subset of CCKWs has a precipitation signal up to a factor of 3 larger than CCKWs that arrive at other times of the day and a 40% greater chance of successfully traversing the Maritime Continent.

Baranowski, DB, Flatau MK, Flatau PJ, Matthews AJ.  2016.  Impact of atmospheric convectively coupled equatorial Kelvin waves on upper ocean variability. Journal of Geophysical Research: Atmospheres. 121:2045-2059.   10.1002/2015JD024150   Abstract

Convectively coupled Kelvin waves (CCKWs) are atmospheric weather systems that propagate eastward along the equatorial wave guide with phase speeds between 11 and 14 m s−1. They are an important constituent of the convective envelope of the Madden-Julian oscillation (MJO), for which ocean-atmosphere interactions play a vital role. Hence, ocean-atmosphere interactions within CCKWs may be important for MJO development and prediction and for tropical climate, in general. Although the atmospheric structure of CCKWs has been well studied, their impact on the underlying ocean is unknown. In this paper, the ocean-atmosphere interactions in CCKWs are investigated by a case study from November 2011 during the CINDY/DYNAMO field experiment, using in situ oceanographic measurements from an ocean glider. The analysis is then extended to a 15 year period using precipitation data from the Tropical Rainfall Measuring Mission and surface fluxes from the TropFlux analysis. A methodology is developed to calculate trajectories of CCKWs. CCKW events are strongly controlled by the MJO, with twice as many CCKWs observed during the convectively active phase of the MJO compared to the suppressed phase. Coherent ocean-atmosphere interaction is observed during the passage of a CCKW, which lasts approximately 4 days at any given longitude. Surface wind speed and latent heat flux are enhanced, leading to a transient suppression of the diurnal cycle of sea surface temperature (SST) and a sustained decrease in bulk SST of 0.1°C. Given that a typical composite mean MJO SST anomaly is of the order of 0.3°C, and more than one CCKW can occur during the active phase of a single MJO event, the oceanographic impact of CCKWs is of major importance to the MJO cycle.

Matthews, AJ, Baranowski DB, Heywood KJ, Flatau PJ, Schmidtko S.  2014.  The surface diurnal warm layer in the Indian Ocean during CINDY/DYNAMO. Journal of Climate. 27:9101-9122.   10.1175/jcli-d-14-00222.1   AbstractWebsite

A surface diurnal warm layer is diagnosed from Seaglider observations and develops on half of the days in the Cooperative Indian Ocean Experiment on Intraseasonal Variability/Dynamics of the Madden-Julian Oscillation (CINDY/DYNAMO) Indian Ocean experiment. The diurnal warm layer occurs on days of high solar radiation flux (>80 W m(-2)) and low wind speed (<6 ms(-1)) and preferentially in the inactive stage of the Madden-Julian oscillation. Its diurnal harmonic has an exponential vertical structure with a depth scale of 4-5m (dependent on chlorophyll concentration), consistent with forcing by absorption of solar radiation. The effective sea surface temperature (SST) anomaly due to the diurnal warm layer often reaches 0.8 degrees C in the afternoon, with a daily mean of 0.2 degrees C, rectifying the diurnal cycle onto longer time scales. This SST anomaly drives an anomalous flux of 4Wm(-2) that cools the ocean. Alternatively, in a climate model where this process is unresolved, this represents an erroneous flux that warms the ocean. A simple model predicts a diurnal warm layer to occur on 30%-50% of days across the tropical warm pool. On the remaining days, with low solar radiation and high wind speeds, a residual diurnal cycle is observed by the Seaglider, with a diurnal harmonic of temperature that decreases linearly with depth. As wind speed increases, this already weak temperature gradient decreases further, tending toward isothermal conditions.

Flatau, PJ, Draine BT.  2014.  Light scattering by hexagonal columns in the discrete dipole approximation. Optics Express. 22:21834-21846.   10.1364/oe.22.021834   AbstractWebsite

Scattering by infinite hexagonal ice prisms is calculated using Maxwell's equations in the discrete dipole approximation for size parameters x = pi D/lambda up to x = 400 (D = prism diameter). Birefringence is included in the calculations. Applicability of the geometric optics approximation is investigated. Excellent agreement between wave optics and geometric optics is observed for large size parameter in the outer part of the 22 degree halo feature. For smaller ice crystals halo broadening is predicted, and there is appreciable "spillover" of the halo into shadow scattering angles < 22 degrees. Ways to retrieve ice crystal sizes are suggested based on the full width at half-maximum of the halo, the power at < 22deg, and the halo polarization. (C) 2014 Optical Society of America

Schmidt, JM, Flatau PJ, Yates RD.  2014.  Convective cells in altocumulus observed with a high-resolution radar. Journal of the Atmospheric Sciences. 71:2130-2154.   10.1175/jas-d-13-0172.1   AbstractWebsite

Very-high-resolution Doppler radar observations are used together with aircraft measurements to document the dynamic and thermodynamic structure of a dissipating altocumulus cloud system associated with a deep virga layer. The cloud layer circulation is shown to consist of shallow vertical velocity couplets near cloud top and a series of subkilometer-scale Rayleigh-Benard-like cells that extend vertically through the depth of the cloud layer. The subcloud layer was observed to contain a number of narrow virga fall streaks that developed below the more dominant Rayleigh-Benard updraft circulations in the cloud layer. These features were discovered to be associated with kilometer-scale horizontally orientated rotor circulations that formed along the lateral flanks of the streaks collocated downdraft circulation. The Doppler analysis further reveals that a layer mean descent was present throughout both the cloud and subcloud layers. This characteristic of the circulation is analyzed with regard to the diabatic and radiative forcing on horizontal length scales ranging from the Rayleigh-Benard circulations to the overall cloud layer width. In particular, linear analytical results indicate that a deep and broad mesoscale region of subsidence is quickly established in middle-level cloud layers of finite width when a layer-wide horizontal gradient in the cloud-top radiative cooling rate is present. A conceptual model summarizing the primary observed and inferred circulation features of the altocumulus layer is presented.

Baranowski, DB, Flatau PJ, Chen S, Black PG.  2014.  Upper ocean response to the passage of two sequential typhoons. Ocean Science. 10:559-570.   10.5194/os-10-559-2014   AbstractWebsite

The atmospheric wind stress forcing and the oceanic response are examined for the period between 15 September 2008 and 6 October 2008, during which two typhoons - Hagupit and Jangmi - passed through the same region of the western Pacific at Saffir-Simpson intensity categories one and three, respectively. A three-dimensional oceanic mixed layer model is compared against the remote sensing observations as well as high-repetition Argo float data. Numerical model simulations suggested that magnitude of the cooling caused by the second typhoon, Jangmi, would have been significantly larger if the ocean had not already been influenced by the first typhoon, Hagupit. It is estimated that the temperature anomaly behind Jangmi would have been about 0.4 degrees C larger in both cold wake and left side of the track. The numerical simulations suggest that the magnitude and position of Jangmi's cold wake depends on the precursor state of the ocean as well as lag between typhoons. Based on sensitivity experiments we show that temperature anomaly difference between "single typhoon" and "two typhoons" as well as magnitude of the cooling strongly depends on the distance between them. The amount of kinetic energy and coupling with inertial oscillations are important factors for determining magnitude of the temperature anomaly behind moving typhoons. This paper indicates that studies of ocean-atmosphere tropical cyclone interaction will benefit from denser, high-repetition Argo float measurements.

Schmidt, JM, Flatau PJ, Harasti PR, Yates RD, Littleton R, Pritchard MS, Fischer JM, Fischer EJ, Kohri WJ, Vetter JR, Richman S, Baranowski DB, Anderson MJ, Fletcher E, Lando DW.  2012.  Radar observations of individual rain drops in the free atmosphere. Proceedings of the National Academy of Sciences of the United States of America. 109:9293-9298.   10.1073/pnas.1117776109   AbstractWebsite

Atmospheric remote sensing has played a pivotal role in the increasingly sophisticated representation of clouds in the numerical models used to assess global and regional climate change. This has been accomplished because the underlying bulk cloud properties can be derived from a statistical analysis of the returned microwave signals scattered by a diverse ensemble comprised of numerous cloud hydrometeors. A new Doppler radar, previously used to track small debris particles shed from the NASA space shuttle during launch, is shown to also have the capacity to detect individual cloud hydrometeors in the free atmosphere. Similar to the traces left behind on film by subatomic particles, larger cloud particles were observed to leave a well-defined radar signature (or streak), which could be analyzed to infer the underlying particle properties. We examine the unique radar and environmental conditions leading to the formation of the radar streaks and develop a theoretical framework which reveals the regulating role of the background radar reflectivity on their observed characteristics. This main expectation from theory is examined through an analysis of the drop properties inferred from radar and in situ aircraft measurements obtained in two contrasting regions of an observed multicellular storm system. The observations are placed in context of the parent storm circulation through the use of the radar's unique high-resolution waveforms, which allow the bulk and individual hydrometeor properties to be inferred at the same time.

Flatau, PJ, Draine BT.  2012.  Fast near field calculations in the discrete dipole approximation for regular rectilinear grids. Optics Express. 20:1247-1252.   10.1364/OE.20.001247   AbstractWebsite

A near-field calculation of light electric field intensity inside and in the vicinity of a scattering particle is discussed in the discrete dipole approximation. A fast algorithm is presented for gridded data. This algorithm is based on one matrix times vector multiplication performed with the three dimensional fast Fourier transform. It is shown that for moderate and large light scattering near field calculations the computer time required is reduced in comparison to some of the other methods. (C) 2012 Optical Society of America

Witek, ML, Flatau PJ, Teixeira J, Markowicz KM.  2011.  Numerical Investigation of Sea Salt Aerosol Size Bin Partitioning in Global Transport Models: Implications for Mass Budget and Optical Depth. Aerosol Science and Technology. 45:401-414.   10.1080/02786826.2010.541957   AbstractWebsite

In this study the importance of sea salt aerosol (SSA) size representation in a global transport model is investigated. For this purpose the Navy Aerosol Analysis and Prediction System (NAAPS) model is employed in a number of SSA simulations. A new dry deposition velocity parameterization is implemented into NAAPS in order to more physically represent deposition processes in the model. SSA size distribution is divided into size bins using two different partition procedures: the previously used iso-log method and the iso-gradient method, which relies on size-dependence of deposition processes. The global SSA simulations are analyzed in terms of the total sea salt mass and the average SSA optical thickness. The results indicate that there is a large dependence of the total mass and average aerosol optical depth on the number of size bins used to represent the aerosol size distribution. The total SSA mass is underestimated by 20% if 2 instead of 15 (reference) size intervals are used. The average aerosol optical depth underestimation is even higher and reaches over 35%. Such large differences can have substantial implications on the accuracy of SSA radiative forcing simulations in climate models. A comparison of the two division procedures shows that the simulations with the iso-gradient intervals are more accurate than the iso-log ones if at least 6 size bins are used. This result indicates that the more physically based division scheme can offer better performance and reduce computational cost of global aerosol transport models.

Markowicz, KM, Flatau PJ, Remiszewska J, Witek M, Reid EA, Reid JS, Bucholtz A, Holben B.  2008.  Observations and modeling of the surface aerosol radiative forcing during UAE(2). Journal of the Atmospheric Sciences. 65:2877-2891.   10.1175/2007jas2555.1   AbstractWebsite

Aerosol radiative forcing in the Persian Gulf region is derived from data collected during the United Arab Emirates (UAE) Unified Aerosol Experiment (UAE(2)). This campaign took place in August and September of 2004. The land -sea-breeze circulation modulates the diurnal variability of the aerosol properties and aerosol radiative forcing at the surface. Larger aerosol radiative forcing is observed during the land breeze in comparison to the sea breeze. The aerosol optical properties change as the onshore wind brings slightly cleaner air. The mean diurnal value of the surface aerosol forcing during the UAE2 campaign is about -20 W m(-2), which corresponds to large aerosol optical thickness (0.45 at 500 nm). The aerosol forcing efficiency [i. e., broadband shortwave forcing per unit optical depth at 550 nm, W m(-2) (tau(500))(-1)] is -53 W m(-2) (tau(500))(-1) and the average single scattering albedo is 0.93 at 550 nm.

Draine, BT, Flatau PJ.  2008.  Discrete-dipole approximation for periodic targets: theory and tests. Journal of the Optical Society of America a-Optics Image Science and Vision. 25:2693-2703.   10.1364/josaa.25.002693   AbstractWebsite

The discrete-dipole approximation (DDA) is a powerful method for calculating absorption and scattering by targets that have sizes smaller than or comparable to the wavelength of the incident radiation. The DDA can be extended to targets that are singly or doubly periodic. We generalize the scattering amplitude matrix and the 4 x 4 Mueller matrix to describe scattering by singly and doubly periodic targets and show how these matrices can be calculated using the DDA. The accuracy of DDA calculations using the open-source code DDSCAT is demonstrated by comparison with exact results for infinite cylinders and infinite slabs. A method for using the DDA solution to obtain fields within and near the target is presented, with results shown for infinite slabs. (C) 2008 Optical Society of America

Markowicz, KM, Flatau PJ, Kardas AE, Remiszewska J, Stelmaszczyk K, Woeste L.  2008.  Ceilometer retrieval of the boundary layer vertical aerosol extinction structure. Journal of Atmospheric and Oceanic Technology. 25:928-944.   10.1175/2007jtecha1016.1   AbstractWebsite

The CT25K ceilometer is a general-purpose cloud height sensor employing lidar technology for detection of clouds. In this paper it is shown that it can also be used to retrieve aerosol optical properties in the boundary layer. The authors present a comparison of the CT25K instrument with the aerosol lidar system and discuss its good overall agreement for both the range-corrected signals and the retrieved extinction coefficient profiles. The CT25K aerosol profiling is mostly limited to the boundary layer, but it is capable of detecting events in the lower atmosphere such as mineral dust events between 1 and 3 km. Assumptions needed for the estimation of the aerosol extinction profiles are discussed. It is shown that, when a significant part of the aerosol layer is in the boundary layer, knowledge of the aerosol optical depth from a sun photometer allows inversion of the lidar signal. In other cases, surface observations of the aerosol optical properties are used. It is demonstrated that additional information from a nephelometer and aethalometer allows definition of the lidar ratio. Extinction retrievals based on spherical and randomly oriented spheroid assumptions are performed. It is shown, by comparison with the field measurements during the United Arab Emirates Unified Aerosol Experiment, that an assumption about specific particle shape is important for the extinction profile inversions. The authors indicate that this limitation of detection is a result of the relatively small sensitivity of this instrument in comparison to more sophisticated aerosol lidars. However, in many cases this does not play a significant role because globally only about 20% of the aerosol optical depth is above the boundary layer.

Witek, ML, Teixeira J, Flatau PJ.  2008.  On stable and explicit numerical methods for the advection-diffusion equation. Mathematics and Computers in Simulation. 79:561-570.   10.1016/j.matcom.2008.03.001   AbstractWebsite

In this paper two stable and explicit numerical methods to integrate the one-dimensional (1D) advection-diffusion equation are presented. These schemes are stable by design and follow the main general concept behind the semi-Lagrangian method by constructing a virtual grid where the explicit method becomes stable. It is shown that the new schemes compare well with analytic solutions and are often more accurate than implicit schemes. In particular, the diffusion-only case is explored in some detail. The error produced by the stable and explicit method is a function of the ratio between the standard deviation an of the initial Gaussian state and the characteristic virtual grid distance AS. Larger values of this ratio lead to very accurate results when compared to implicit methods, while lower values lead to less accuracy. It is shown that the sigma(0)/Delta S ratio is also significant in the advection-diffusion problem: it determines the maximum error generated by new methods, obtained with a certain combination of the advection and diffusion values. In addition, the error becomes smaller when the problem becomes more advective or more diffusive. (C) 2008 IMACS. Published by Elsevier B.V. All rights reserved.

Wells, KC, Witek M, Flatau P, Kreidenwei SM, Westphal DL.  2007.  An analysis of seasonal surface dust aerosol concentrations in the western US (2001-2004): Observations and model predictions. Atmospheric Environment. 41:6585-6597.   10.1016/j.atmosenv.2007.04.034   AbstractWebsite

Long-term surface observations indicate that soil dust represents over 30% of the annual fine (particle diameter less than 2.5 mu m) particulate mass in many areas of the western US; in spring and summer, it represents an even larger fraction. There are numerous dust-producing playas in the western US, but surface dust aerosol concentrations in this region are also influenced by dust of Asian origin. This study examines the seasonality of surface soil dust concentrations at 15 western US sites using observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network from 2001 to 2004. Average soil concentrations in particulate matter less than 10 mu m in diameter (PM 10) were lowest in winter and peaked during the summer months at these sites; however, episodic higher-concentration events (> 10 mu g m(-3)) occurred in the spring, the time of maximum Asian dust transport to the western US. Simulated surface dust concentrations from the Navy Aerosol Analysis and Prediction System (NAAPS) suggested that long-range transport from Asia dominates surface dust concentrations in the western US in the spring, and that, although some long-range transport does occur throughout the year (1-2 mu g m(-3)), locally generated dust plays a larger role in the region in summer and fall. However, NAAPS simulated some anomalously high concentrations (> 50 mu g m(-3)) of local dust in the fall and winter months over portions of the western US. Differences between modeled and observed dust concentrations were attributed to overestimation of total observed soil dust concentrations by the assumptions used to convert IMPROVE measurements into PM(10) soil concentrations, lack of inhibition of model dust production in snow-covered regions, and lack of seasonal agricultural sources in the model. (c) 2007 Elsevier Ltd. All rights reserved.

Remiszewska, J, Flatau PJ, Markowicz KM, Reid EA, Reid JS, Witek ML.  2007.  Modulation of the aerosol absorption and single-scattering albedo due to synoptic scale and sea breeze circulations: United Arab Emirates experiment perspective. Journal of Geophysical Research-Atmospheres. 112   10.1029/2006jd007139   AbstractWebsite

The spectral aerosol absorption properties in the Arabian Gulf region were observed during the United Arab Emirates Unified Aerosol Experiment (UAE(2)). Measurements were taken at a coastal region of the Arabian Gulf located 60 km northeast of Abu Dhabi, the capital of the United Arab Emirates, allowing characterization of pollution and dust absorption properties in a highly heterogeneous environment. A large observed change of the diurnal signal during the period under study ( 27 August through 30 September 2004) was due to ( 1) strong sea and land breeze and ( 2) changes in prevailing synoptic-scale flow. During the night, stagnating air resulted in gradual accumulation of pollution with maximum absorption in the early morning hours. The rising sun increased both the depth of the boundary layer and the temperature of the interior desert, resulting in strong and sudden sea breeze onset which ventilated the polluted air accumulated during the night. Our observations show that the onshore winds brought cleaner air resulting in decreasing values of the absorption coefficient and increasing values of the single-scattering albedo (SSA). The mean value of the absorption coefficient at 550 nm measured during the sea breeze was 10.2 +/- 0.9 Mm(-1), while during the land breeze it was 13.8 +/- 1.2 Mm(-1). Synoptic- scale transport also strongly influenced particle fine/ coarse partition with "northern'' flow bringing pollution particles and "southern'' flow bringing more dust.

Witek, ML, Flatau PJ, Teixeira J, Westphal DL.  2007.  Coupling an ocean wave model with a global aerosol transport model: A sea salt aerosol parameterization perspective. Geophysical Research Letters. 34   10.1029/2007gl030106   AbstractWebsite

[1] A new approach to sea salt parameterization is proposed which incorporates wind- wave characteristics into the sea salt emission function and can be employed globally and under swell- influenced conditions. The new source function was applied into Navy Aerosol Analysis and Prediction System model together with predictions from the global wave model Wave Watch III. The squared surface wind velocity U-10 and the wave's orbital velocity V-orb= pi H-s/ T-P are shown to be the key parameters in the proposed parameterization. Results of the model simulations are validated against multi- campaign shipboard measurements of the sea salt aerosol. The validations indicate a good correlation between V-orb and the measured surface concentrations. The model simulations with the new parameterization exhibit an improved agreement with the observations when compared to a wind- speed- only approach. The proposed emission parameterization has the potential to improve the simulations of sea salt emission in aerosol transport models.

Witek, ML, Flatau PJ, Quinn PK, Westphal DL.  2007.  Global sea-salt modeling: Results and validation against multicampaign shipboard measurements. Journal of Geophysical Research-Atmospheres. 112   10.1029/2006jd007779   AbstractWebsite

[1] Open-ocean measurements of sea-salt concentrations from five different campaigns are used to validate the sea-salt parameterization in numerical models. The data set is unique in that it is from open-ocean shipboard measurements which alleviates typical problems associated with onshore wave breaking on land stations ( surf zone). The validity of the sea-salt parameterizations is tested by employing a global forecasting model and transport model with detailed representation of dry and wet deposition, advection and diffusion, and other physical processes. It is shown that the inclusion of these processes leads to good agreement with shipboard measurements. The correlation coefficient of measured and modeled sea-salt mass concentrations for all data points was 0.76 and varied from 0.55 to 0.84 for different experiments. Average sea-salt mass concentration was 4.6 mu g/m(3) from measurements and 7.3 mu g/m(3) from the model, for all considered experiments. It was found that model-measurements discrepancies were affected by wet deposition uncertainties but also suggested was the influence of source uncertainties in the strong wind-speed regime, lack of a wind-speed threshold for emission onset, and lack of size differentiation in applied deposition velocity. No apparent relationship between the water temperature and the measured sea-salt concentration was found in the analyzed data set.

Stramski, D, Wozniak SB, Flatau PJ.  2004.  Optical properties of Asian mineral dust suspended in seawater. Limnology and Oceanography. 49:749-755. AbstractWebsite

The spectral optical properties of Asian mineral dust suspended in seawater exhibit significant variability associated with the origin (and, hence, the chemistry and mineralogy) and particle size distribution of the samples. The measurements of dust samples from different locations show that the mass-specific absorption coefficient of particles, a(p)*, at a wavelength of light lambda = 440 nm, varies from about 0.028 m(2) g(-1) for the soil dust from Chinese desert Pnear Dunhuang to 0.15 m(2) g(-1) for the soil dust of volcanic origin in Cheju Island (South Korea). At lambda = 400 nm, this range is 0.05-0.23 m(2) g(-1). The aerosol sample collected in the Sea of Japan during a massive dust storm in East Asia shows a(p)*(lambda) > 0.1 m(2) g(-1) for lambda < 425 nm. The mass-specific scattering coefficient, b(p)*(lambda), ranges from about 0.8 to 1.5 m(2) g(-1) at blue and green wavelengths for the samples examined. The single scattering albedo, omega(0) increases with wavelength. For lambda > 400 nm, omega(0) was > 0.78 for the sample from Cheju Island and > 0.9 for other samples. In the near-infrared region (750-850 nm), where absorption by dust particles is small or undetectable, omega(0), was close to 1.

Flatau, PJ.  2004.  Fast solvers for one dimensional light scattering in the discrete dipole approximation. Optics Express. 12:3149-3155.   10.1364/OPEX.12.003149   AbstractWebsite

In this paper we propose new algorithms for solution of light scattering on non-spherical particles using one-dimensional variant of discrete dipole approximation. We discuss recent advances in algorithms for matrices with structures in context of the discrete dipole approximation and show that it is possible to apply these advances to form non-iterative solvers and improve algorithmic complexity in case of many incoming plane parallel waves. (C) 2004 Optical Society of America.

Markowicz, KM, Flatau PJ, Vogelmann AM, Quinn PK, Welton EJ.  2003.  Clear-sky infrared aerosol radiative forcing at the surface and the top of the atmosphere. Quarterly Journal of the Royal Meteorological Society. 129:2927-2947.   10.1256/qj.02.224   AbstractWebsite

We study the aerosol radiative forcing at infrared (IR) wavelengths using data from the Aerosol Characterization Experiment. ACE-Asia, cruise of the National Oceanic and Atmospheric Administration research vessel Ronald H. Brown. The analyses apply to the daytime periods of clear-sky conditions for the area within the immediate vicinity of the ship. An optical model is derived from chemical measurements, lidar profiles, and visible-extinction measurements, which are used to estimate the IR aerosol optical thickness and the single-scattering albedo. The IR model results are compared to detailed Fourier transform interferometer-based IR aerosol forcing estimates, pyrgeometer-based IR downward fluxes, and to observations of the direct aerosol solar forcing. This combined approach attests to the self-consistency of the optical model, and allows us to derive quantities such as the IR forcing at the top of the atmosphere (TOA) and the IR optical thickness. The mean IR aerosol optical thickness at 10 mum is 0.08 and the single-scattering albedo is 0.55. The modelled IR aerosol surface forcing reaches 10 W m(-2) during the cruise, which is a significant contribution compared to the total direct aerosol forcing. The surface IR aerosol radiative forcing is between 10 and 25% of the short-wave aerosol forcing. The IR aerosol forcing at the TOA can be up to 19% of the solar aerosol forcing. We show good agreement between TOA aerosol IR forcing derived from the model and from the CERES (Clouds and the Earth's Radiant Energy System) satellite data. Over the Sea of Japan, the average IR aerosol radiative forcing is 4.6 W m(-2) at the surface. and 1.5 W m(-2) at the TOA. The IR forcing efficiency at the TOA is a strong function of aerosol temperature (which is coupled to vertical structure) and changes between 10 and 18 W m(-2) (per IR optical depth unit), while the surface IR forcing efficiency varies between 37 and 55 W m(-2) (per IR optical depth unit).

Vogelmann, AM, Flatau PJ, Szczodrak M, Markowicz KM, Minnett PJ.  2003.  Observations of large aerosol infrared forcing at the surface. Geophysical Research Letters. 30   10.1029/2002gl016829   AbstractWebsite

Studies of aerosol effects on the Earth's energy budget usually consider only the cooling effects at short (solar) wavelengths, but we demonstrate that they also have important warming effects at thermal infrared (IR) wavelengths that have rarely been observed and are commonly ignored in climate models. We use high-resolution spectra to obtain the IR radiative forcing at the surface for aerosols encountered in the outflow from northeastern Asia. The spectra were measured by the Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) from the NOAA Ship Ronald H. Brown during the Aerosol Characterization Experiment-Asia (ACE-Asia). We show that the daytime surface IR forcing are often a few Wm(-2) and can reach almost 10 Wm(-2) for large aerosol loadings. Thus, even the smaller aerosol IR forcing observed here are comparable to or greater than the 1 to 2 Wm(-2) IR surface enhancement from increases in greenhouse gases. These results highlight the importance of aerosol IR forcing which should be included in climate model simulations.

Flatau, MK, Flatau PJ, Schmidt J, Kiladis GN.  2003.  Delayed onset of the 2002 Indian monsoon. Geophysical Research Letters. 30   10.1029/2003gl017434   AbstractWebsite

[1] We show that there is a set of dynamical predictors, which facilitate forecasting of a delayed monsoon onset. The main dynamical contributor is the early May propagation of the "bogus onset Intraseasonal Oscillation'' which triggers a set of events precluding the climatological monsoon onset. We analyze in detail the 2002 monsoon onset and show that it followed a pattern described in our previous study. We notice that the 2003 monsoon onset followed very similar pattern and was delayed.

Flatau, MK, Talley L, Niiler PP.  2003.  The North Atlantic Oscillation, surface current velocities, and SST changes in the subpolar North Atlantic. Journal of Climate. 16:2355-2369.   10.1175/2787.1   AbstractWebsite

Changes in surface circulation in the subpolar North Atlantic are documented for the recent interannual switch in the North Atlantic Oscillation (NAO) index from positive values in the early 1990s to negative values in 1995/96. Data from Lagrangian drifters, which were deployed in the North Atlantic from 1992 to 1998, were used to compute the mean and varying surface currents. NCEP winds were used to calculate the Ekman component, allowing isolation of the geostrophic currents. The mean Ekman velocities are considerably smaller than the mean total velocities that resemble historical analyses. The northeastward flow of the North Atlantic Current is organized into three strong cores associated with topography: along the eastern boundary in Rockall Trough, in the Iceland Basin ( the subpolar front), and on the western flank of the Reykjanes Ridge (Irminger Current). The last is isolated in this Eulerian mean from the rest of the North Atlantic Current by a region of weak velocities on the east side of the Reykjanes Ridge. The drifter results during the two different NAO periods are compared with geostrophic flow changes calculated from the NASA/Pathfinder monthly gridded sea surface height (SSH) variability products and the Advanced Very High Resolution Radiometer (AVHRR) SST data. During the positive NAO years the northeastward flow in the North Atlantic Current appeared stronger and the circulation in the cyclonic gyre in the Irminger Basin became more intense. This was consistent with the geostrophic velocities calculated from altimetry data and surface temperature changes from AVHRR SST data, which show that during the positive NAO years, with stronger westerlies, the subpolar front was sharper and located farther east. SST gradients intensified in the North Atlantic Current, Irminger Basin, and east of the Shetland Islands during the positive NAO phase, associated with stronger currents. SST differences between positive and negative NAO years were consistent with changes in air-sea heat flux and the eastward shift of the subpolar front. SST advection, as diagnosed from the drifters, likely acted to reduce the SST differences.