Ceilometer retrieval of the boundary layer vertical aerosol extinction structure

Citation:
Markowicz, KM, Flatau PJ, Kardas AE, Remiszewska J, Stelmaszczyk K, Woeste L.  2008.  Ceilometer retrieval of the boundary layer vertical aerosol extinction structure. Journal of Atmospheric and Oceanic Technology. 25:928-944.

Date Published:

Jun

Keywords:

aethalometer, climate, clouds, LIDAR, model, optical-properties, performance, ratio, satellite, sun photometer measurements

Abstract:

The CT25K ceilometer is a general-purpose cloud height sensor employing lidar technology for detection of clouds. In this paper it is shown that it can also be used to retrieve aerosol optical properties in the boundary layer. The authors present a comparison of the CT25K instrument with the aerosol lidar system and discuss its good overall agreement for both the range-corrected signals and the retrieved extinction coefficient profiles. The CT25K aerosol profiling is mostly limited to the boundary layer, but it is capable of detecting events in the lower atmosphere such as mineral dust events between 1 and 3 km. Assumptions needed for the estimation of the aerosol extinction profiles are discussed. It is shown that, when a significant part of the aerosol layer is in the boundary layer, knowledge of the aerosol optical depth from a sun photometer allows inversion of the lidar signal. In other cases, surface observations of the aerosol optical properties are used. It is demonstrated that additional information from a nephelometer and aethalometer allows definition of the lidar ratio. Extinction retrievals based on spherical and randomly oriented spheroid assumptions are performed. It is shown, by comparison with the field measurements during the United Arab Emirates Unified Aerosol Experiment, that an assumption about specific particle shape is important for the extinction profile inversions. The authors indicate that this limitation of detection is a result of the relatively small sensitivity of this instrument in comparison to more sophisticated aerosol lidars. However, in many cases this does not play a significant role because globally only about 20% of the aerosol optical depth is above the boundary layer.

Notes:

n/a

Website

DOI:

10.1175/2007jtecha1016.1