Publications

Export 2 results:
Sort by: Author Title [ Type  (Desc)] Year
Journal Article
Dayton, PK, Jarrell SC, Kim S, Parnell PE, Thrush SF, Hammerstrom K, Leichter JJ.  2019.  Benthic responses to an Antarctic regime shift: food particle size and recruitment biology. Ecological Applications. 29   10.1002/eap.1823   AbstractWebsite

Polar ecosystems are bellwether indicators of climate change and offer insights into ecological resilience. In this study, we describe contrasting responses to an apparent regime shift of two very different benthic communities in McMurdo Sound, Antarctica. We compared species-specific patterns of benthic invertebrate abundance and size between the west (low productivity) and east (higher productivity) sides of McMurdo Sound across multiple decades (1960s-2010) to depths of 60 m. We present possible factors associated with the observed changes. A massive and unprecedented shift in sponge recruitment and growth on artificial substrata observed between the 1980s and 2010 contrasts with lack of dramatic sponge settlement and growth on natural substrata, emphasizing poorly understood sponge recruitment biology. We present observations of changes in populations of sponges, bryozoans, bivalves, and deposit-feeding invertebrates in the natural communities on both sides of the sound. Scientific data for Antarctic benthic ecosystems are scant, but we gather multiple lines of evidence to examine possible processes in regional-scale oceanography during the eight years in which the sea ice did not clear out of the southern portion of McMurdo Sound. We suggest that large icebergs blocked currents and advected plankton, allowed thicker multi-year ice, and reduced light to the benthos. This, in addition to a possible increase in iron released from rapidly melting glaciers, fundamentally shifted the quantity and quality of primary production in McMurdo Sound. A hypothesized shift from large to small food particles is consistent with increased recruitment and growth of sponges on artificial substrata, filter-feeding polychaetes, and some bryozoans, as well as reduced populations of bivalves and crinoids that favor large particles, and echinoderms Sterechinus neumayeri and Odontaster validus that predominantly feed on benthic diatoms and large phytoplankton mats that drape the seafloor after spring blooms. This response of different guilds of filter feeders to a hypothesized shift from large to small phytoplankton points to the enormous need for and potential value of holistic monitoring programs, particularly in pristine ecosystems, that could yield both fundamental ecological insights and knowledge that can be applied to critical conservation concerns as climate change continues.

Dayton, PK, Kim S, Jarrell SC, Oliver JS, Hammerstrom K, Fisher JL, O'Connor K, Barber JS, Robilliard G, Barry J, Thurber AR, Conlan K.  2013.  Recruitment, Growth and Mortality of an Antarctic Hexactinellid Sponge, Anoxycalyx joubini. PLOS One. 8   10.1371/journal.pone.0056939   AbstractWebsite

Polar ecosystems are sensitive to climate forcing, and we often lack baselines to evaluate changes. Here we report a nearly 50-year study in which a sudden shift in the population dynamics of an ecologically important, structure-forming hexactinellid sponge, Anoxycalyx joubini was observed. This is the largest Antarctic sponge, with individuals growing over two meters tall. In order to investigate life history characteristics of Antarctic marine invertebrates, artificial substrata were deployed at a number of sites in the southern portion of the Ross Sea between 1967 and 1975. Over a 22-year period, no growth or settlement was recorded for A. joubini on these substrata; however, in 2004 and 2010, A. joubini was observed to have settled and grown to large sizes on some but not all artificial substrata. This single settlement and growth event correlates with a region-wide shift in phytoplankton productivity driven by the calving of a massive iceberg. We also report almost complete mortality of large sponges followed over 40 years. Given our warming global climate, similar system-wide changes are expected in the future.