Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Kim, S, Hammerstrom K, Dayton P.  2019.  Epifaunal community response to iceberg-mediated environmental change in McMurdo Sound, Antarctica. Marine Ecology Progress Series. 613:1-14.   10.3354/meps12899   AbstractWebsite

High-latitude marine communities are dependent on sea ice patterns. Sea ice cover limits light, and hence primary production and food supply. Plankton, carried by currents from open water to areas under the sea ice, provides a transitory food resource that is spatially and temporally variable. We recorded epifaunal abundances at 17 sites in McMurdo Sound, Antarctica, over 12 yr, and found differences in communities based on location and time. The differences in location support patterns observed in long-term infaunal studies, which are primarily driven by currents, food availability, and larval supply. The temporal differences, highlighting 2004 and 2009 as years of change, match the altered persistence of sea ice in the region, caused by the appearance and disappearance of mega-icebergs. The temporal changes were driven by changes in abundance of species that filter feed on large particulates. The shift in current patterns that occurred due to mega-icebergs decreased the normal food supply in the region. In addition to the decrease in food availability, we suggest that the reduced light resulting from thicker-than-normal sea ice resulted in a shift to smaller phytoplankton. A change in food quality as well as quantity may have influenced the temporal change in epifaunal communities.

Dayton, PK, Oliver JS, Thrush SF, Hammerstrom K.  2019.  Bacteria defend carrion from scavengers. Antarctic Science. 31:13-15.   10.1017/s0954102018000457   AbstractWebsite

Carrion in the form of dead seal pups and algal mats placed on soft bottom habitats at Explorers Cove and Salmon Bay, McMurdo Sound, attract scavenging invertebrates that are driven away by hydrogen sulphide produced by sulphate-reducing bacteria sequestered below a layer of Beggiatoa/Thioploca-like filamentous bacteria. This system is usually found for lipid-rich marine mammal carrion, but also occurred with natural algal mats.

Dayton, PK, Jarrell SC, Kim S, Parnell PE, Thrush SF, Hammerstrom K, Leichter JJ.  2019.  Benthic responses to an Antarctic regime shift: food particle size and recruitment biology. Ecological Applications. 29   10.1002/eap.1823   AbstractWebsite

Polar ecosystems are bellwether indicators of climate change and offer insights into ecological resilience. In this study, we describe contrasting responses to an apparent regime shift of two very different benthic communities in McMurdo Sound, Antarctica. We compared species-specific patterns of benthic invertebrate abundance and size between the west (low productivity) and east (higher productivity) sides of McMurdo Sound across multiple decades (1960s-2010) to depths of 60 m. We present possible factors associated with the observed changes. A massive and unprecedented shift in sponge recruitment and growth on artificial substrata observed between the 1980s and 2010 contrasts with lack of dramatic sponge settlement and growth on natural substrata, emphasizing poorly understood sponge recruitment biology. We present observations of changes in populations of sponges, bryozoans, bivalves, and deposit-feeding invertebrates in the natural communities on both sides of the sound. Scientific data for Antarctic benthic ecosystems are scant, but we gather multiple lines of evidence to examine possible processes in regional-scale oceanography during the eight years in which the sea ice did not clear out of the southern portion of McMurdo Sound. We suggest that large icebergs blocked currents and advected plankton, allowed thicker multi-year ice, and reduced light to the benthos. This, in addition to a possible increase in iron released from rapidly melting glaciers, fundamentally shifted the quantity and quality of primary production in McMurdo Sound. A hypothesized shift from large to small food particles is consistent with increased recruitment and growth of sponges on artificial substrata, filter-feeding polychaetes, and some bryozoans, as well as reduced populations of bivalves and crinoids that favor large particles, and echinoderms Sterechinus neumayeri and Odontaster validus that predominantly feed on benthic diatoms and large phytoplankton mats that drape the seafloor after spring blooms. This response of different guilds of filter feeders to a hypothesized shift from large to small phytoplankton points to the enormous need for and potential value of holistic monitoring programs, particularly in pristine ecosystems, that could yield both fundamental ecological insights and knowledge that can be applied to critical conservation concerns as climate change continues.

Dayton, PK, Robilliard GA, Oliver JS, Kim S, Hammerstrom K, O'Connor K, Fisher J, Barber J, Jarrell S.  2018.  Long-term persistence of wood on the sea floor at McMurdo Sound, Antarctica. Antarctic Science. 30:355-356.   10.1017/s0954102018000305   AbstractWebsite